ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

THEORETICAL BASES OF CHEMICAL TECHNOLOGY

ISSN 2410-6593 (Print), ISSN 2686-7575 (Online) https://doi.org/10.32362/2410-6593-2020-15-3-7-20 УДК 66.011:66.048.3

(cc) BY

Области энергетического преимущества схем разделения смесей, содержащих компоненты с близкими летучестями

М.Е. Пешехонцева, М.А. Маевский, И.С. Гаганов, А.В. Фролкова[®]

МИРЭА – Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова), Москва, 119571 Россия [®]Автор для переписки, e-mail: frolkova_nastya@mail.ru

Цепи. Для ректификации четырехкомпонентных зеотропных смесей, содержащих компоненты с близкими летучестями, определены условия эффективности применения промежуточного заданного разделения (при отсутствии компонента, распределенного между дистиллятным и кубовым потоками). На примере системы этилацетат-бензолтолуол-бутилацетат выделена область энергетического преимущества схемы, основанной на использовании предварительного фракционирования смеси, по сравнению со схемой, первая ректификационная колонна которой работает по второму заданному разделению. Экономия энергозатрат составляет до 20%. Реализация первого и второго заданного разделения может стать конкурентной при расположении точки исходного состава вблизи единичных K-поверхностей или в области с другим соотношением коэффициентов распределения. Промежуточное разделение не может быть рекомендовано для разделения смеси с близкой к единице относительной летучестью пары компонентов со средними температурами кипения.

Методы. В качестве метода исследования выбрано математическое моделирование в программном комплексе Aspen Plus V.10.0. Моделирование основывалось на уравнении локального состава Wilson. Относительные ошибки описания фазового равновесия не превышают 3%.

Результаты. Исследована структура диаграммы парожидкостного равновесия и диаграммы поверхностей единичных коэффициентов распределения компонентов для систем этилацетат-бензол-толуол-бутилацетат и ацетон-толуол-бутилацетат-о-ксилол. Предложены схемы, основанные на использовании промежуточного, второго (обе системы) или первого (вторая система) заданного разделения. Проведен расчет процесса ректификации и подобраны параметры работы колонн, обеспечивающие получение веществ, качество которых отвечает требованиям ГОСТ при минимальных энергозатратах.

Выводы. На основе проведенных исследований сформулированы рекомендации по использованию промежуточного разделения при ректификации четырехкомпонентных смесей, содержащих компоненты с близкими летучестями.

Ключевые слова: ректификация, промежуточное разделение, равновесие жидкостьпар, относительная летучесть компонентов, коэффициенты распределения компонентов.

Для цитирования: Пешехонцева М.Е., Маевский М.А., Гаганов И.С., Фролкова А.В. Области энергетического преимущества схем разделения смесей, содержащих компоненты с близкими летучестями. *Тонкие химические технологии*. 2020;15(3):7-20. https://doi.org/10.32362/2410-6593-2020-15-3-7-20

Areas of energy advantage for flowsheets of separation modes for mixtures containing components with similar volatilities

Margarita E. Peshekhontseva, Mark A. Maevskiy, Ivan S. Gaganov, Anastasiya V. Frolkova $^{@}$

MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies), Moscow, 119571 Russia

[@]Corresponding author, e-mail: frolkova_nastya@mail.ru

Objectives. The conditions for the effective application of the sharp distillation technique (without a component distributed between the distillate and bottom flows) for the separation of quaternary zeotropic mixtures containing components with similar volatilities were determined. The area of energy advantage for the flowsheet based on the preliminary fractionation of the mixture, compared with the flowsheet, the first distillation column of which works based on the indirect separation mode, was identified for an ethyl acetate–benzene–toluene–butyl acetate system. Energy savings of up to 20% were achieved. The direct and indirect distillation modes can become competitive when the point of the original composition is located near single K-surfaces or in a region with a different ratio of distribution coefficients. Sharp distillation is not suitable for the separation of a mixture containing a pair of components exhibiting relative unity volatility with medium boiling points.

Methods. The mathematical modeling in the Aspen Plus V.10.0 software package was chosen as the research method. The simulation was based on the Wilson local composition equation. The relative errors in the description of the phase equilibrium did not exceed 3%.

Results. The structure of the vapor-liquid equilibrium diagram and diagram of surfaces of the unit component distribution coefficients were studied for the ethyl acetate-benzene-toluene-butyl acetate and acetone-toluene-butyl acetate-o-xylene systems. Flowsheets based on the sharp, indirect (both systems), or direct (second system) distillation modes were proposed. The distillation process was simulated, and the parameters of the column work were determined (the quality of the substances meets the State Standard requirements of the Russian Federation for minimal energy consumption).

Conclusions. Recommendations regarding the use of sharp distillation for the separation of quaternary mixtures containing components with similar volatilities were devised.

Keywords: distillation, sharp distillation, liquid–vapor equilibrium, components relative volatility, components distribution coefficients.

For citation: Peshekhontseva M.E., Maevskiy M.A., Gaganov I.S., Frolkova A.V. Areas of energy advantage for flowsheets of separation modes for mixtures containing components with similar volatilities. *Tonk. Khim. Tekhnol.* = *Fine Chem. Technol.* 2020;15(3):7-20. https://doi.org/10.32362/2410-6593-2020-15-3-7-20

введение

Вопрос выбора энергоэффективного варианта схемы разделения является одним из ключевых в технологии основного органического и нефтехимического синтеза. В первую очередь это связано с тем, что на блок разделения реакционной смеси приходится от 60 до 80% всех энергозатрат [1–3]. Разработка схемы разделения многокомпонентных смесей является поливариантной задачей, поскольку одну и ту же смесь можно разделить с использованием различных видов разделения (первое, второе или промежуточное заданное разделение) или за счет применения специальных методов [1, 2, 4–8]. Формулировка практических рекомендаций по использованию того или иного вида или метода позволит значительно сократить время на этапе предпроектной разработки технологии разделения.

В работе [9] проведена оценка возможности использования режима промежуточного заданного разделения (при условии отсутствия компонента, распределенного между кубом и дистиллятом) при ректификации четырехкомпонентных неидеальных смесей, содержащих азеотропы и/или компоненты с близкими летучестями. На основе анализа диаграмм поверхностей единичных коэффициентов распределения компонентов выделены области составов, для которых использование промежуточного разделения не только возможно, но и потенциально энергетически более выгодно по сравнению с первым и вторым заданным разделением. В рамках настоящей работы проведен сравнительный анализ схем полного разделения многокомпонентных зеотропных смесей (содержащих близкие по летучестям компоненты), основанных на использовании различных видов разделения. Определены условия, при которых промежуточное заданное разделение является энергетически более выгодным по сравнению с другими видами разделения, а также ограничения по его применению.

Объектами исследования выступают четырехкомпонентные системы: этилацетат (ЭА)-бензол (Б)-толуол (Т)-бутилацетат (БА) (смесь растворителей производства биоразлагаемых полимеров [10]), ацетон (А)-толуол (Т)-бутилацетат (БА)-*о*-ксилол (*o*-K) (смесь растворителей производства эпоксидных грунтовок [11]). Обе системы зеотропны и содержат пары компонентов с близкими летучестями: этилацетат-бензол, толуол-бутилацетат.

МАТЕРИАЛЫ И МЕТОДЫ

Моделирование фазового равновесия проводилось в среде программного комплекса AspenPlus V.10.0 с использованием уравнения Вильсона:

$$\ln y_i = 1 - \ln\left(\sum_j A_{ij} x_j\right) - \sum_j \frac{A_{ji} x_j}{\sum_k A_{jk} x_k}$$

где $A_{ij} = a_{ij} + \frac{b_{ij}}{T} + c_{ij} \ln T + d_{ij}T + \frac{e_{ij}}{T^2}$, a_{ij} , a_{ji} , b_{ji} , b_{ji} – пара-

метры уравнения Вильсона.

Данное уравнение хорошо зарекомендовало себя при исследовании фазового равновесия гомогенных систем, в том числе при изменении внешних условий. Выбор модели обусловлен необходимостью проведения расчетов фазового равновесия и процесса ректификации при пониженном давлении. Параметры бинарного взаимодействия и ошибки описания фазового равновесия приведены в табл. 1.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На основе анализа кривых фазового равновесия бинарных систем этилацетат-бензол и толуол-бутилацетат [12-13] было показано, что отделение этилацетата от бензола с использованием обычной ректификации невозможно ни при каких условиях. Данный факт накладывает ограничение на использование первого заданного разделения при ректификации смеси ЭА-Б-Т-БА. Отделение толуола от бутилацетата без применения специальных методов возможно в ректификационной колонне при пониженном давлении (наблюдается увеличение относительной летучести компонентов более чем в 1.5 раза). Таким образом, для разделения смеси ЭА-Б-Т-БА на первом этапе возможно использование промежуточного или второго (при пониженном давлении) заданного разделения, для смеси А-Т-БА-о-К потенциально возможен любой вариант.

Оценка эффективности использования того или иного варианта разделения проводилась для смесей различного состава, характеризующихся разным соотношением коэффициентов распределения компонентов. Для выбора исходных составов построены диаграммы единичных поверхностей коэффициентов распределения компонентов (рис. 1).

Область составов, в которой коэффициенты распределения двух компонентов характеризуются значением больше единицы, а остальных – меньше единицы, благоприятна для реализации промежуточного разделения. Для системы, приведенной на рис. 1а, данная область занимает значительную часть концентрационного симплекса. Для системы рис. 1b эта область достаточно узкая, что связано с близостью

Таблица 1. Параметры уравнения Wilson для бинарных составляющих систем бензол (Б)–толуол (Т)
этилацетат (ЭА)–бутилацетат (БА) и ацетон (А)–толуол (Т)–бутилацетат (БА)–о-ксилол (о-К
Table 1. Wilson equation parameters for the binary constituents of the benzene (B)-toluene (T)-ethyl acetat
(EA)-butyl acetate (BA) and acetone (A)-toluene (T)-butyl acetate (BA)-o-xylene (o-X) system

Бинарная система Binary system	a _{ij}	a _{ji}	b _{ij}	b _{ji}	ΔΤ, %	ΔΥ, %
Б-Т В-Т	-1.5857	2.3275	634.7787	-913.6505	0.17	1.06
Б–ЭА В–ЕА	8.2122	-11.6434	-2841.5425	4010.0664	0.07	0.31
Б–БА В–ВА	0	0	-19.0272	54.5272	0.20	1.12
T–A* T–A*	5.10951	-4.14947	-2010.08	1570.5	0.20	0.94
Т–БА* Т–ВА*	-2.0001	1.53945	951.97	-848.68	0.27	4.56
ЭА–БА ЕА–ВА	0	0	-5.6575	-15.65	0.37	1.67

Бинарная система Binary system	a _{ij}	<i>a</i> _{ji}	b _{ij}	b _{ji}	ΔΤ, %	ΔΥ, %
A–T A–T	0.8857	-0.8619	-461.065	247.597	0.57	1.47
А–БА А–ВА	0	0	-0.1353	-87.2465	0.44	0.55
АК АХ	0	0	-163.265	-96.3392	0.00	0.10
Т- <i>о</i> -К* Т- <i>о</i> -Х*	0	0	-151.016	126.916	_	_
БА- <i>о</i> -К** ВА- <i>о</i> -Х**	0	0	245.808	-409.273	_	_

Таблица 1. Окончание Table 1. Continued

Примечание: *параметры оценены по экспериментальным данным [12-14];

**параметры оценены с использованием модели UNIFAC.

Note: *parameters are estimated from experimental data [12–14];

**parameters were evaluated using the UNIFAC model.

Рис. 1. Диаграммы единичных *К*-поверхностей систем: этилацетат (ЭА)–бензол (Б)–толуол (Т)–бутилацетат (БА) (а), ацетон (А)–толуол (Т)–бутилацетат (БА)–*о*-ксилол (*о*-К) (b) при 760 мм рт. ст.

Fig. 1. Diagrams of the unit *K*-surfaces of the systems: ethyl acetate (EA)–benzene (B)–toluene (T)–butyl acetate (BA) (a) and acetone (A)–toluene (T)–butyl acetate (BA)–o-xylene (o-X) (b) at 760 mm Hg.

летучестей компонентов с промежуточными температурами кипения (толуола и бутилацетата).

Для системы ЭА–Б–Т–БА выбраны точки исходных составов, принадлежащие разным секущим (секущая 1 отвечает эквимолярному соотношению бензола, толуола и бутилацетата; для секущих 2, 3, 4 составы обогащены бутилацетатом, бензолом, толуолом, соответственно). Для каждой секущей рассматривается пять составов, отвечающих сечениям (1–5) с постоянной концентрацией этилацетата 0.05 (1), 0.25 (2), 0.45 (3), 0.65 (4), 0.82 (5). Исходный состав смеси обозначен двумя цифрами, первая из которых указывает на номер секущей, вторая – на номер сечения. Состав **2.1** ($x_{3A} = 0.05$, $x_{5} = 0.05$, $x_{7} = 0.3$, $x_{5A} = 0.6$ мол. долей) принадлежит области, в которой только бутилацетата является тяжелолетучим компонентом, остальные компоненты – легколетучие. Остальные составы характеризуются следующим соотношением коэффициентов распределения: $K_{_{\rm PA}} > 1, K_{_{\rm D}} > 1, K_{_{\rm T}} < 1, K_{_{\rm EA}} < 1.$

Для системы A–T–БА–*о*-К будут рассмотрены два исходных состава, принадлежащие областям с разным соотношением коэффициентов распределения: эквимолярный ($K_{\rm A} > 1, K_{\rm T} > 1, K_{\rm EA} > 1, K_{o-{\rm K}} < 1$) и $x_{\rm A} = 0.04, x_{\rm T} = 0.32, x_{\rm EA} = 0.32, x_{o-{\rm K}} = 0.32$ мол. долей ($K_{\rm A} > 1, K_{\rm T} > 1, K_{\rm EA} < 1, K_{o-{\rm K}} < 1$).

Для каждой системы предложены схемы разделения различной структуры, проведен расчет процесса ректификации и подобраны параметры работы колонн, обеспечивающие получение веществ, качество которых отвечает требованиям ГОСТ (бензол – № 5955-75, этилацетат, бутилацетат – № 8981-78; толуол – № 14710-78; ацетон – № 2768-84; *о*-ксилол – № 9410-78) при минимальных энергозатратах (рассматривается тепловая нагрузка на кипятильники колонн).

Система этилацетат-бензол-толуол-бутилацетат Для разделения смесей предлагаются две принципиальные схемы (рис. 2).

Параметры работы колонн (ЧТТ – число теоретических тарелок; *P* – давление (мм рт. ст.); $F_{_{\rm HCX}}/F_{_{_{3\rm KTP}}}$ – соотношение количеств исходной смеси и экстрактивного агента; ТП – номер тарелки питания; *R* – флегмовое число, а также энергозатраты (*Q*) для обеих схем и 20 исходных составов приведены в табл. 2–5. Нумерация тарелок начинается с верха колонны. Для разделения пары компонентов этилацетат–бензол используется рекомендуемый в литературе [15] фенол, повышающий летучесть бензола по отношению к этилацетату.

Рис. 2. Схемы разделения смеси этилацетат (ЭА)-бензол (Б)-толуол (Т)-бутилацетат (БА), основанные на использовании промежуточного (а) и второго (b) заданного разделения (экстрактивный агент – фенол).
Fig. 2. Ethyl acetate (EA)-benzene (B)-toluene (T)-butyl acetate (BA) mixture separation flowsheets based on the sharp (a) and indirect (b) distillation modes (separating agent (SA): phenol).

Таблица 2. Параметры работы колонн схем разделения, приведенных на рис. 2
(для исходных составов 1.1–1.5)Table 2. Parameters of the columns work of the separation flowsheets shown in Fig. 2

(for the original compositions from 1.1 to 1.5)

Колонна Column	$\begin{array}{c} \textbf{UTT} \\ (\textbf{F}_{nex}/\textbf{F}_{PA}) \\ \textbf{NTS} \\ (\textbf{F}_{init}/\textbf{F}_{SA}) \end{array}$	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW	$\begin{array}{c} \text{UTT} \\ (F_{\text{ucx}}/F_{\text{PA}}) \\ \text{NTS} \\ (F_{\text{init}}/F_{\text{SA}}) \end{array}$	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW	
	П	ромежу Sha	точное раз rp distillati	Второе заданное разделение Indirect distillation							
Исходный состав смеси 1.1 ($x_{_{3A}} = 0.04$, $x_{_{5}} = 0.32$, $x_{_{T}} = 0.32$, $x_{_{5A}} = 0.32$ мол. долей) The original composition of the mixture is 1.1 ($x_{_{EA}} = 0.04$, $x_{_{B}} = 0.32$, $x_{_{T}} = 0.32$, $x_{_{BA}} = 0.32$ mol. fract.)											
1	34	760	14	2.7	1189.2	36	100	10	1.1	1551.0	
2	24 (1/1)	760	13/6	1	766.6	34	760	18	1.7	850.1	
3	36	760	6	4.8	222.0	24 (1/1)	760	13/6	1	766.6	
4	32	110	10	3.5	1492.7	36	760	6	4.8	222.0	
					$\Sigma O = 3670.5$					$\Sigma O = 3389.7$	

Исходный состав смеси **1.2** ($x_{_{3A}} = 0.25$, $x_{_{5}} = 0.25$, $x_{_{7}} = 0.25$, $x_{_{5A}} = 0.25$ мол. долей) The original composition of the mixture is **1.2** ($x_{_{EA}} = 0.25$, $x_{_{B}} = 0.25$, $x_{_{T}} = 0.25$, $x_{_{BA}} = 0.25$ mol. fract.)

	e	*			< LA	В		DA		·
1	24	760	14	2	1346.9	24	100	9	1	1669.5
2	30 (1/1.7)	760	9/4	3	608.6	24	760	12	1.4	1064.2
3	22	760	9	3	987.4	30 (1/1.7)	760	9/4	3	608.6
4	24	110	12	3.8	1230.6	22	760	9	3	987.4
					$\sum Q = 4173.5$					$\sum Q = 4329.7$

Таблица 2. Окончание Table 2. Continued

Колонна Column	HTT (F _{nex} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<i>Q</i> , кВт <i>Q</i> , kW	HTT (F _{nex} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW		
	П	ромежу Sha	точное раз rp distillati	делени on	e	Второе заданное разделение Indirect distillation						

Исходный состав смеси **1.3** ($x_{_{3A}} = 0.46$, $x_{_{5}} = 0.18$, $x_{_{T}} = 0.18$, $x_{_{5A}} = 0.18$ мол. долей) The original composition of the mixture is **1.3** ($x_{_{EA}} = 0.46$, $x_{_{B}} = 0.18$, $x_{_{T}} = 0.18$, $x_{_{BA}} = 0.18$ mol. fract.)

	e	1			EA	в		DA		<u> </u>
1	32	760	19	1.4	1413.6	28	100	8	0.4	1419.1
2	36 (1/3)	760	10/4	1.3	1417.2	32	760	21	1.2	1278.3
3	28	760	5	1.3	1172.5	36 (1/3)	760	10/4	1.3	1417.2
4	36	110	12	3.1	766.6	28	760	5	1.3	1172.5
					$\Sigma Q = 4769.9$					$\sum Q = 5287.1$

Исходный состав смеси **1.4** ($x_{_{\text{ЭА}}} = 0.64$, $x_{_{\text{Б}}} = 0.12$, $x_{_{\text{T}}} = 0.12$, $x_{_{\text{БA}}} = 0.12$ мол. долей) The original composition of the mixture is **1.4** ($x_{_{\text{EA}}} = 0.64$, $x_{_{\text{B}}} = 0.12$, $x_{_{\text{T}}} = 0.12$, $x_{_{\text{BA}}} = 0.12$ mol. fract.)

1	36	760	23	1.3	1598.5	28	100	8	0.3	1417.1	
2	36 (1/4)	760	10/4	1.3	1943.1	32	760	22	1.3	1582.6	
3	32	760	5	1.6	1791.0	36 (1/4)	760	10/4	1.3	1943.1	
4	32	110	11	3.5	559.7	32	760	5	1.6	1791.0	
					$\sum Q = 5892.3$					$\sum Q = 6733.8$	

Исходный состав смеси **1.5** ($x_{2A} = 0.82$, $x_{5} = 0.06$, $x_{T} = 0.06$, $x_{5A} = 0.06$ мол. долей) The original composition of the mixture is **1.5** ($x_{5A} = 0.82$, $x_{5B} = 0.06$, $x_{T} = 0.06$, $x_{5B} = 0.06$ mol. fract.)

	8	1			EA	B)	BA		/
1	36	760	24	1.2	1751.0	24	100	8	0.2	1339.1
2	32 (1/5.5)	760	11/4	0.9	2885.0	32	760	21	1.3	1821.2
3	32	760	5	2.1	2708.6	32 (1/5.5)	760	11/4	0.9	2885.0
4	32	110	11	3.6	285.9	32	760	5	2.1	2708.6
					$\Sigma O = 7630.5$					$\Sigma O = 8753.9$

Примечание: экстрактивный агент – фенол.

Note: the separating agent is phenol.

Таблица 3. Параметры работы колонн схем разделения, приведенных на рис. 2

(для исходных составов 2.1–2.5)

Table 3. Parameters of the columns work of the separation flowsheets shown in Fig. 2(for the original compositions from 2.1 to 2.5)

Колонна Column	HTT (F _{nex} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW	HTT (F _{ucx} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<i>Q</i> , кВт <i>Q</i> , kW	
	Промежуточное разделениеВторое заданное разделениеSharp distillationIndirect distillation										
Исходный состав смеси 2.1 ($x_{_{3A}} = 0.05$, $x_{_{5}} = 0.05$, $x_{_{7}} = 0.3$, $x_{_{5A}} = 0.6$ мол. долей) The original composition of the mixture is 2.1 ($x_{_{7A}} = 0.05$, $x_{_{7}} = 0.05$, $x_{_{7}} = 0.3$, $x_{_{74}} = 0.6$ mol. fract.)											

	8	1			C EA	B)	BA	,	
1	58	760	16	8	832.6	37	100	11	4.3	2296.7
2	33 (1/2)	760	11/6	0.5	175.7	36	760	15	4.6	509.8
3	28	760	6	1.3	125.9	33 (1/2)	760	11/6	0.5	175.7
4	37	110	12	6.1	2195.6	28	760	6	1.3	125.9
					$\sum Q = 3329.8$					$\sum Q = 3108.1$

Таблица 3. Окончание Table 3. Continued

	ЧТТ (F /F _m)	D	ТП см/РА	D	<i>Q</i> , кВт	ЧТТ (F /F _m)		ТП см/РА	D	<i>Q</i> , кВт	
Колонна Column	$(\mathbf{F}_{init}^{Hex}/\mathbf{F}_{SA})$	P	FS mix/SA	R	Q, kW	$(\mathbf{F}_{init}^{Hex}/\mathbf{F}_{SA})$		FS mix/SA	R	Q, kW	
	Π	ромежу Sha	точное раз rp distillati	делени on	e	Второе заданное разделение Indirect distillation					
	Исходн The original co	ый сост npositio	ав смеси 2. n of the mix	$2 (x_{\Im A} = ture is 2$	$0.25, x_{\rm b} = 0.039$.2 ($x_{\rm EA} = 0.25, x_{\rm b}$	$x_{\rm H} = 0.237, x_{\rm H}$ $x_{\rm H} = 0.039, x_{\rm T} = 0.039, x_{\rm T}$	$_{A} = 0.47$ 0.237, .	74 мол. дол x _{ва} = 0.474	ей) mol. fra	ct.)	
1	37	760	17	2.5	960.1	36	100	10	2.1	1900.8	
2	32 (1/5)	760	11/5	0.5	882.2	33	760	20	1.9	767.9	
3	33	760	5	2.1	818.2	32 (1/5)	760	11/5	0.5	882.2	
4	40	110	12	5.7	1638.4	33	760	5	2.1	818.2	
					$\sum Q = 4298.9$					$\sum Q = 4369.1$	
Исходный состав смеси 2.3 ($x_{3A} = 0.45$, $x_{E} = 0.029$, $x_{T} = 0.173$, $x_{EA} = 0.348$ мол. долей) The original composition of the mixture is 2.3 ($x_{EA} = 0.45$, $x_{B} = 0.029$, $x_{T} = 0.173$, $x_{BA} = 0.348$ mol. fract.)											
1	36	760	21	1.6	1176.5	33	100	9	1.2	1689.8	
2	33 (1/5.5)	760	13/5	0.4	1550.1	28	760	18	1.6	1131.9	
3	28	760	5	2.2	1525.1	33 (1/5.5)	760	13/5	0.4	1550.1	
4	37	110	12	6.2	1283.6	28	760	5	2.2	1525.1	
$\sum Q = 5535.3 \qquad \qquad \sum Q = 5896.9$											
Исходный состав смеси 2.4 ($x_{_{3A}} = 0.65$, $x_{_{5}} = 0.0184$, $x_{_{T}} = 0.1108$, $x_{_{5A}} = 0.2208$ мол. долей) The original composition of the mixture is 2.4 ($x_{_{EA}} = 0.65$, $x_{_{B}} = 0.0184$, $x_{_{T}} = 0.1108$, $x_{_{BA}} = 0.2208$ mol. fract.)											
1	37	760	25	1.4	1485.0	28	100	8	0.7	1519.8	
2	32 (1/6.5)	760	12/5	0.5	2599.0	29		19	1.8	1686.3	
3	33	760	5	2.6	2443.6	32 (1/6.5)	760	12/5	0.5	2599.0	
4	37	110	12	6.1	810.9	33	760	5	2.6	2443.6	
					$\sum Q = 7338.5$,		$\sum Q = 8248.7$	
	Исходн The original co	ый сост npositio	ав смеси 2. n of the mix	5 ($x_{_{\Im A}} =$ ture is 2	$0.85, x_{\rm b} = 0.008$.5 ($x_{\rm EA} = 0.85, x_{\rm b}$	$x_{\rm B} = 0.048, x_{\rm E} = 0.008, x_{\rm T} = 0.008, x_{\rm$	= 0.09 0.048, .	94 мол. дол x _{ва} = 0.094 ;	ей) mol. fra	ct.)	
1	36	760	25	1.3	1786.6	29	100	9	0.2	1172.9	
2	33 (1/8)	760	15/8	0.4	4075.4	32	760	21	1.8	2152.2	
3	36	760	5	3.2	3689.0	33 (1/8)	760	15/8	0.4	4075.4	
4	33	110	12	7	395.0	36	760	5	3.2	3689.0	
					$\Sigma Q = 9946.0$					$\sum Q = 11089.5$	
<i>Приме</i> Note: tl	<i>чание:</i> экстракт he separating ag	гивный a ent is ph	агент – фен enol.	ол.							
На рис марных эн	с. 3 приведени ергозатрат схе	ы графи ем разде	ики зависи еления от (мости содержа	сум- ания ны	Графики, при для определен	иведен ния кос	ные на рис рдинат точ	. 3, был ек пере	и использова- ссечения зави-	
этилацетат	а в исходной	смеси	(для секу	цих 1	и 2). сим	юстей энергоз	ватрат с	схем от сод	ержани	ия этилацетата	
Для состав	ов, расположен	ных на	двух друг	их секу	щих, в ис	ходной смеси	и: для с	екущей 1 у	$k_{\mathrm{BA}} = 0.$	17 мол. долей,	
аналогични	ые графики не	е строи	лись в вид	цу того	, что для	секущей 2 з	$r_{_{\mathrm{BA}}} = 0$).29 мол. д	цолей.	На рис. 4 ка-	
энергозатр	аты схемы, ос	снованн	юй на исп	ЮЛЬЗОВ	ании чес	твенно показ	ана гр	аница (по	верхно	сть выделена	
промежуто схемой. пе	рвая колонна і	лия, ні которой	аже по сра работает	авнениі по II за	дан- три	риловкой), н ваемых схе	та кото м разл	орои энер целения п	лозатр рактич	аты рассма- ески олина-	

ковы.

ному разделению.

Таблица 4. Параметры работы колонн схем разделения, приведенных на рис. 2

(для исходных составов 3.1–3.5)

Table 4. Parameters of the columns work of the separation flowsheets shown in Fig. 2(for the original compositions from 3.1 to 3.5)

Колонна Column	$\begin{array}{c} \mathbf{4TT} \\ (\mathbf{F}_{\mu ex}/\mathbf{F}_{PA}) \\ \mathbf{NTS} \\ (\mathbf{F}_{init}/\mathbf{F}_{SA}) \end{array}$	Р	ТП см/РА FS mix/SA	R	<i>Q</i> , кВт <i>Q</i> , kW	$\begin{array}{c} \mathbf{4TT} \\ (\mathbf{F}_{_{\text{HCX}}}/\mathbf{F}_{_{\text{PA}}}) \\ \mathbf{NTS} \\ (\mathbf{F}_{_{\text{init}}}/\mathbf{F}_{_{\text{SA}}}) \end{array}$	Р	ТП см/РА FS mix/SA	R	<i>Q</i> , кВт <i>Q</i> , kW			
	П	ромежу Sha	точное раз rp distillati	вделени ion	e	B	ropoe 3 Indi	аданное ра irect distilla	зделені ation	ие			
	Исхо The original	одный со composi	остав смеси ition of the r	a 3.1 ($x_{\mathfrak{IA}}$ mixture i	$x = 0.05, x_{\rm E} = 0.05$ s 3.1 ($x_{\rm EA} = 0.0$	$6, x_{\rm T} = 0.05, x_{\rm BA}$ $5, x_{\rm B} = 0.6, x_{\rm T} =$	= 0.3 M = 0.05, x	мол. долей) _{ва} = 0.3 mo	l. fract.)				
1	30	760	15	1.8	1616.23	30	100	7	1.4	1745.58			
2	30 (1/1)	760	14/7	1.2	1123.41	36	760	23	1	1318.31			
3	32	760	5	6.2	359.27	30 (1/1)	760	14/7	1.2	1123.41			
4	47	110	14	18.3	859.27	32	760	5	6.2	359.31			
					$\sum Q = 3958.18$					$\sum Q = 4546.61$			
	Исходн The original cor	ый сост npositio	ав смеси 3. n of the mix	$2 (x_{\mathfrak{BA}} = 1)$	$0.25, x_{\rm b} = 0.474$.2 ($x_{\rm EA} = 0.25, x_{\rm b}$	$x_{\rm T} = 0.039, x_{\rm B}$ $x_{\rm B} = 0.474, x_{\rm T} = 0.474, x_{\rm T}$	$_{\rm A} = 0.23$ 0.039, 2	37 мол. доло x _{ва} = 0.237 г	ей) mol. frac	et.)			
1	30	760	15	1.4	1571.93	29	100	9	0.8	1629.03			
2	22 (1/2.6)	760	10/6	2.4	1332.27	36	760	23	1	1606.97			
3	24	760	5	4	1240.14	22 (1/2.6)	760	10/6	2.4	1332.27			
4	47	110	14	18.5	671.34	24	760	5	4	1240.16			
					$\sum Q = 4815.68$					$\sum Q = 5808.43$			
	Исходный состав смеси 3.3 ($x_{_{3A}} = 0.45, x_{_{5}} = 0.348$ The original composition of the mixture is 3.3 ($x_{_{EA}} = 0.45, y_{_{2}} = 0.45, y_{_{$							8, $x_{\rm T} = 0.029$, $x_{\rm bA} = 0.173$ мол. долей) $x_{\rm B} = 0.348$, $x_{\rm T} = 0.029$, $x_{\rm BA} = 0.173$ mol. fract.)					
1	30	760	16	1.4	1745.25	28	100	9	0.6	1674.92			
2	38 (1/2.4)	760	9/4	3.5	1218.12	33	760	21	1	1850.27			
3	20	760	5	1.6	1275.53	38 (1/2.4)	760	9/4	3.5	1218.19			
4	47	110	14	18.5	500.86	20	760	5	1.6	1275.58			
					$\sum Q = 4739.76$		-	$\sum Q = 6018.96$					
Т	Исходныі he original comp	й состав position	смеси 3.4 of the mixtu	$(x_{\Im A} = 0.$ are is 3.4	$65, x_{\rm B} = 0.2208$ $(x_{\rm EA} = 0.65, x_{\rm B}$	$x_{\rm T} = 0.0184, x_{\rm T} = 0.2208, x_{\rm T} = 0.2208, x_{\rm T} = 0.2208, x_{\rm T} = 0.0000000000000000000000000000000000$	$_{\rm ba}^{\rm ba} = 0.1$	108 мол. до x _{ва} = 0.110	лей) 8 mol. fr	act.)			
1	30	760	16	1.4	1901.95	28	100	10	0.5	1720.68			
2	38 (1/4.4)	760	10/5	8.5	1616.26	34	760	21	1	2043.17			
3	24	760	5	2.4	2326.96	38 (1/4.4)	760	10/5	8.5	1620.69			
4	47	110	14	18.3	313.27	24	760	5	2.4	2327.07			
					$\sum Q = 6158.44$					$\sum Q = 7711.61$			
	Исходн The original cor	ый сост npositio	ав смеси 3. n of the mix	5 $(x_{\Im A} = $ sture is 3	$0.85, x_{\rm b} = 0.094$.5 ($x_{\rm EA} = 0.85, x_{\rm b}$	$x_{\rm T} = 0.008, x_{\rm B}$ $x_{\rm B} = 0.094, x_{\rm T} = 0.094$	A = 0.04 0.008, 2	48 мол. доле x _{ва} = 0.048 г	ей) mol. frac	et.)			
1	30	760	17	1.5	2128.95	27	100	10	0.5	1756.05			
2	38 (1/5)	760	10/4	29	2159.29	36	760	23	1.1	2239.51			
3	23	760	5	2.2	2893.40	38 (1/5)	760	10/4	29	2164.64			
4	47	110	14	16.4	137.03	23	760	5	2.2	2893.40			
					$\sum Q = 7318.67$					$\sum Q = 9053.60$			
<i>Приме</i> <i>Note:</i> t	<i>чание:</i> экстракт he separating ag	тивный a ent is ph	агент – фен enol.	ол.									

Таблица 5. Параметры работы колонн схем разделения, приведенных на рис. 2

(для исходных составов 4.1-4.5)

Table 5. Parameters of the columns work of the separation flowsheets shown in Fig. 2(for the original compositions from 4.1 to 4.5)

Колонна Column	HTT (F _{ucx} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW	HTT (F _{ucx} /F _{PA}) NTS (F _{init} /F _{SA})	Р	ТП см/РА FS mix/SA	R	<u>Q</u> , кВт <u>Q</u> , kW	
	П	ромежу Sha	точное раз rp distillati	делени ion	e	B	горое з Ind	аданное ра irect distilla	зделені ition	ие	
Исходный состав смеси 4.1 ($x_{3A} = 0.05$, $x_{5} = 0.3$, $x_{7} = 0.6$, $x_{5A} = 0.05$ мол. долей) The original composition of the mixture is 4.1 ($x_{5A} = 0.05$, $x_{5B} = 0.3$, $x_{7} = 0.6$, $x_{5A} = 0.05$ mol. fract.)											
1	36	760	17	4	1543.79	25	100	9	0.4	1406.04	
2	29 (1/0.8)	760	13/5	1	503.63	32	760	15	2.1	1244.33	
3	22	760	5	3.3	209.09	29 (1/0.8)	760	13/5	1.3	580.73	
4	25	110	10	1.1	1094.80	22	760	5	3.3	212.09	
	L	1	1		$\sum Q = 3351.31$		1	I		$\sum Q = 3443.19$	
Исходный состав смеси 4.2 ($x_{_{3A}} = 0.25$, $x_{_{5}} = 0.237$, $x_{_{7}} = 0.474$, $x_{_{5A}} = 0.039$ мол. долей) The original composition of the mixture is 4.2 ($x_{_{5A}} = 0.25$, $x_{_{5}} = 0.237$, $x_{_{7}} = 0.474$, $x_{_{5A}} = 0.039$ mol. fract.)											
1	32	760	16	3	1769.60	23	100	8	0.3	1405.04	
2	33 (1/2.4)	760	9/4	3.1	767.02	29	760	14	1.7	1540.01	
3	23	760	5	1.7	729.90	33 (1/2.4)	760	9/4	3.2	788.41	
4	25	110	10	1.1	864.99	23	760	5	1.7	730.26	
			1		$\sum Q = 4131.51$		1	1		$\sum Q = 4463.72$	
	Исходн The original cor	ый сост npositio	ав смеси 4. n of the mix	$3 (x_{_{\mathcal{B}A}} = $ ture is 4	$0.45, x_{\rm b} = 0.173$.3 ($x_{\rm EA} = 0.45, x_{\rm b}$	$x_{\rm B} = 0.348, x_{\rm B} = 0.173, x_{\rm T} = 0.173, x_{\rm$	= 0.02 0.348, 1	29 мол. доле x _{ва} = 0.029 г	ей) mol. frac	et.)	
1	30	760	16	3	2270.55	22	100	7	0.2	1368.67	
2	38 (1/3.2)	760	10/5	7.9	1182.36	24	760	13	1.2	1641.69	
3	22	760	5	1.6	1276.29	35 (1/3.2)	760	10/5	7.5	1109.44	
4	25	110	10	1.1	634.97	22	760	5	1.7	1287.29	
					$\sum Q = 5364.17$		1			$\sum Q = 5407.09$	
Т	Исходный he original comp	й состан position	в смеси 4.4 of the mixtu	$(x_{\Im A} = 0.$ are is 4.4	$65, x_{\rm B} = 0.1108$ $(x_{\rm EA} = 0.65, x_{\rm B}$	$x_{\rm T} = 0.2208, x_{\rm T} = 0.1108, x_{\rm T} = 0.1108$	_{БА} = 0.0 0.2208,	184 мол. до x _{ва} = 0.0184	лей) 4 mol. fr	ract.)	
1	30	760	18	2.8	2621.59	20	100	6	0.2	1408.87	
2	38 (1/6)	760	9/4	17	1533.78	23	760	13	1.3	2008.85	
3	22	760	5	3.2	2825.41	38 (1/6)	760	9/4	17	1528.09	
4	25	110	10	1.1	402.88	22	760	5	3.2	2817.44	
		1	1		$\sum Q = 7383.66$		1	1		$\sum Q = 7763.25$	
	Исходн The original cor	ый сост npositio	ав смеси 4. n of the mix	5 ($x_{_{\mathrm{PA}}} =$ ture is 4	$0.85, x_{\rm b} = 0.048$.5 ($x_{\rm EA} = 0.85, x_{\rm b}$	$x_{\rm H} = 0.094, x_{\rm H}$ $x_{\rm H} = 0.048, x_{\rm T} = 0.048, x_{\rm T}$	a = 0.00 0.094, .	08 мол. доле x _{ва} = 0.008 г	ей) mol. frac	et.)	
1	30	760	18	2.6	2907.61	18	100	5	0.2	1376.49	
2	40 (1/9.5)	760	11/5	50	1883.38	24	760	13	1.4	2339.91	
3	24	760	5	4.9	5077.87	40 (1/9.5)	760	11/5	50	1887.00	
4	25	110	10	1.1	171.47	24	760	5	4.9	5075.90	
				Σ	Q = 10040.33				Σ	Q = 10679.30	
<i>Приме</i> Note: t	<i>чание:</i> экстракт he separating ag	тивный a ent is ph	агент – фен enol.	ол.							

Тонкие химические технологии = Fine Chemical Technologies. 2020;15(3):7-20

Рис. 3. Зависимости энергозатрат схем разделения смеси этилацетат–бензол–толуол–бутилацетат от содержания этилацетата (ЭА) в исходной смеси:

(а) секущая 1 (составы 1.1–1.5); (b) секущая 2 (составы 2.1–2.5).

Fig. 3. Dependence of the energy consumption of the ethyl acetate-benzene-toluene-butyl acetate mixture separation

flowsheets on the content of ethyl acetate (EA) in the initial mixture:

(a) secant 1 (compositions 1.1–1.5); (b) secant 2 (compositions 2.1–2.5).

Рис. 4. Области энергетического преимущества схем разделения, основанных на использовании промежуточного разделения (над поверхностью $Q_{\text{промеж}} \approx Q_{\text{II}}$) и II заданного разделения (под поверхностью $Q_{\text{промеж}} \approx Q_{\text{II}}$).

Fig. 4. Areas of energy advantage of the separation flowsheet based on the sharp distillation (above $Q_{\text{sharp}} \approx Q_{\text{indir}}$ surface) and indirect distillation (below $Q_{\text{sharp}} \approx Q_{\text{indir}}$ surface).

Область энергетического преимущества схемы, представленной на рис. 2a, расположена выше поверхности $Q_{\text{промеж.}} \approx Q_{\text{II}}$, схемы рис. 2b – ниже поверхности $Q_{\text{промеж.}} \approx Q_{\text{II}}$.

Система ацетон-толуол-бутилацетат-о-ксилол

Для разделения данной смеси рассматриваются три схемы различной структуры: в первой колонне реализуется режим первого (рис. 5a, 5b), второго (рис. 5c, 5d) или промежуточного (рис. 5e) заданного разделения. Схемы на рис. 5a и 5b и на рис. 5c и 5d отличаются использованием первого и второго заданного разделения при ректификации тройной смеси толуол-бутилацетат-*о*-ксилол (ацетон-толуолбутилацетат).

Предварительные расчеты показали, что при отделении толуола от смеси бутилацетат—о-ксилол достичь требуемого качества толуола невозможно, даже при давлении 50 мм рт. ст. Данный факт связан с тем, что летучесть толуола по сравнению с бутилацетатом в тройной смеси ниже, чем в бинарной.

Результаты расчета процесса ректификации (параметры работы колонн и энергозатраты) для остальных схем приведены в табл. 6.

Полученные результаты показывают, что для системы А–Т–БА–*о*-К использование промежуточного разделения исходной смеси невыгодно (энергозатраты на 20–30% выше по сравнению с другими режимами разделения).

ЗАКЛЮЧЕНИЕ

Если исходный состав четырехкомпонентной неидеальной зеотропной смеси *i–j–k–l* ($T_i^0 < T_j^0 < T_k^0 < T_l^0$) принадлежит области, для которой соблюдается соотношение $K_i > 1$, $K_j > 1$, $K_k < 1$, $K_l < 1$, то можно рекомендовать использовать предварительное фракционирование на первом этапе разделения. Область с указанным соотношением коэффициентов распределения будет занимать большую часть объема концентрационного симплекса, если система характеризуется наличием компонентов с близкими летучестями для пар *i–j* и/или *k–l*. При разделении смеси состава, принадлежащего данной области, использование промежуточного разделения будет энергетически более выгодным по сравнению с режимами первого и второго заданного разделения (до 20% экономии

Рис. 5. Схемы разделения смеси ацетон (A)-толуол (T)-бутилацетат (БА)-*о*-ксилол (*o*-К), основанные на использовании первого (a)-(b), второго (c)-(d) и промежуточного (e) заданного разделения. Fig. 5. Flowsheets of the separation of the mixture: acetone (A)-toluene (T)-butyl acetate (BA)-*o*-xylene (*o*-X), based on the direct (a)-(b), indirect (c)-(d) and sharp (e) distillation modes.

Таблица 6. Параметры работы колонн схем разделения, приведенных на рис. 5 **Table 6.** Parameters of the columns work of the separation flowsheets shown in Fig. 5

Колонна Column	ЧТТ NTS	Р	ТП FS	R	<i>Q</i> , кВт <i>Q</i> , kW	ЧТТ NTS	Р	ТП FS	R	<i>Q</i> , кВт <i>Q</i> , kW
-------------------	------------	---	----------	---	---------------------------------------	------------	---	----------	---	---------------------------------------

Исходный состав $x_A = 0.25, x_T = 0.25, x_{5A} = 0.25, x_{o-K} = 0.25$ мол. долей The original composition of $x_A = 0.25, x_T = 0.25, x_{BA} = 0.25, x_{o-X} = 0.25$ mol. fract.

Первое заданное разделение (рис. 5b) Direct distillation (Fig. 5b)							Промежуточное заданное разделение (рис. 5е) Sharp distillation (Fig. 5e)							
1	20	760	11	0.6	491.3	48	2832.3							
2	33	760	16	2.3	1687.3	24	760	18	0.7	388.6				
3	36	110	12	4.4	1397.2	40	760	24	4.8	1476.6				
	$\sum Q = 3575.8$							$\sum Q = 4697.5$						
	Второе заданное разделение (рис. 5с) Indirect distillation (Fig. 5с)							Второе заданное разделение (рис. 5d) Indirect distillation (Fig. 5d)						
1	36	760	17	1.2	1868.0	36	760	17	1.2	1868.0				
2	25	760	11	0.6	424.5	33	110	10	1.2	1208.5				
3	40	110	13	4.5	1422.9	28	760	22	0.6	368.0				
$\sum Q = 3715.4$										$\sum Q = 3444.5$				

Таблица 6. Окончание Table 6. Continued

Колонна Column	ЧТТ NTS	Р	ТП FS	R	<i>Q</i> , кВт <i>Q</i> , kW	ЧТТ NTS	Р	ТП FS	R	<i>Q</i> , кВт <i>Q</i> , kW
-------------------	------------	---	----------	---	---------------------------------------	------------	---	----------	---	---------------------------------------

Исходный состав $x_A = 0.04$, $x_T = 0.32$, $x_{BA} = 0.32$, $x_{o-K} = 0.32$ мол. долей The original composition of $x_A = 0.04$, $x_T = 0.32$, $x_{BA} = 0.32$, $x_{o-X} = 0.32$ mol. fract.

Первое заданное разделение (рис. 5b) Direct distillation (Fig. 5b)							Промежуточное заданное разделение (рис. 5е) Sharp distillation (Fig. 5e)				
1	20	760	9	3.6	213.7	80 760 24 8 3					
2	33	760	16	2.2	2090.1	24	760	13	1.6	110.5	
3	36	110	12	3.1	1363.6	40	760	25	4.8	1889.5	
				$\sum Q = 3667.4$					$\sum Q = 5260.0$		
	Второе за Indi	аданное ра rect distilla	азделение (ation (Fig. 5	рис. 5с) с)		Второе заданное разделение (рис. 5d) Indirect distillation (Fig. 5d)					
1	38	760	18	1.8	2056.5	38	760	18	1.8	2056.5	
2	25	760	11	3.2	177.3	33	110	11	2.7	1469.6	
3	36	110	12	3.1	1363.7	24	760	13	1.6	110.6	
					$\sum Q = 3597.5$					$\sum Q = 3636.7$	

энергозатрат). Последние режимы могут стать конкурентными при расположении точки исходного состава вблизи единичных *К*-поверхностей или в области с другим соотношением коэффициентов распределения. Данные закономерности проиллюстрированы на примере системы этилацетат-бензол-толуол-бутилацетат.

Если близка к единице относительная летучесть пары компонентов со средними температурами кипения (j-k), область составов с соотношением коэффициентов распределения $K_i > 1$, $K_j > 1$, $K_k < 1$, $K_l < 1$ будет небольшой и промежуточное разделение не может быть

СПИСОК ЛИТЕРАТУРЫ

1. Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Л.: Химия; 1975. 240 с.

2. Тимофеев В.С., Серафимов Л.А., Тимошенко А.В. Принципы технологии основного органического и нефтехимического синтеза. М.: Высшая школа; 2010. 408 с. ISBN 978-5-06-006067-6

3. Фролкова А.К. Разделение азеотропных смесей. Физико-химические основы и технологические приемы: монография. М.: ВЛАДОС; 2010. 192 с.

4. Petlyuk F.B. Distillation Theory and Its Application to Optimal Design of Separation Units. Cambridge, UK: Cambridge University Press; 2004.

https://doi.org/10.1017/CBO9780511547102

5. Green D.W., Southard M.Z. (Eds.). Approximate Multicomponent Distillation Methods. In: Perry's Chemical Engineers' Handbook. New York, USA: McGraw-Hill Education; 2019. Section 13. P. 25-28. рекомендовано для разделения смеси, что подтверждено на примере системы ацетон-толуол-бутилацетат-*о*-ксилол.

Благодарности

Работа выполнена по финансовой поддержке Российского научного фонда (проект 19-19-00620).

Acknowledgments

The study was supported by the Russian Foundation for Basic Research, project No. 19-19-00620.

Авторы заявляют об отсутствии конфликта интересов. The authors declare no conflicts of interest.

REFERENCES

1. Zharov V.T., Serafimov L.A. *Fiziko-khimicheskie* osnovy distillyatsii i rektifikatsii (Physico-chemical principles of distillation and rectification. Leningrad: Khimiya; 1975. 240 p. (in Russ.).

2. Timofeev V.S., Serafimov L.A., Timoshenko A.V. *Printsipy tekhnologii osnovnogo organicheskogo i neftekhimicheskogo sinteza* (The principles of the technology of basic organic and petrochemical synthesis). Moscow: Vysshaya shkola; 2010. 408 p. (in Russ.). ISBN 978-5-06-006067-6

3. Frolkova A.K. *Razdelenie azeotropnykh smesei. Fiziko-khimicheskie osnovy i tekhnologicheskie priemy: monografiya* (Separation of azeotropic mixtures. Physicochemical fundamentals and technological methods). Moscow: VLADOS; 2010. 192 p. (in Russ.).

4. Petlyuk F.B. Distillation Theory and Its Application to Optimal Design of Separation Units. Cambridge, UK: Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511547102 6. Mavletkulova P.O., Serafimov L.A., Danilov R.Yu. Comparative Analysis of Sharp Separation Regimes in the Distillation of Ternary Zeotropic Mixtures. *Theor. Found. Chem. Eng.* 2014;48(5):622-628.

https://doi.org/10.1134/S0040579514050200

7. Serafimov L.A., Chelyuskina T.V., Mavletkulova P.O. Special Distillation Regime Involving an Infinite Reflux Ratio and an Infinite Number of Separation Stages. *Theor. Found. Chem. Eng.* 2014;48(1):48-54.

https://doi.org/10.1134/S0040579514010138

8. Khalili-Garakani A., Ivakpour J., Kasiri N. Threecomponent Distillation Columns Sequencing: Including Configurations with Divided-wall Columns. *Iranian J. Oil Gas Sci. Technol.* 2016;5(2):66-83.

https://dx.doi.org/10.22050/ijogst.2016.15799

9. Фролкова А.В., Пешехонцева М.Е., Гаганов И.С. Промежуточное заданное разделение при ректификации четырехкомпонентных смесей. *Тонкие химические технологии*. 2018;13(3):41-48.

https://doi.org/10.32362/24106593-2018-13-3-41-48

10. Клейменова М.Н., Комарова Л.Ф., Лазуткина Ю.С. Технология переработки жидких отходов растворителей в производстве кремний органических эмалей. Экология и промышленность России. 2014;3:11-15.

11. Ильина Е.С., Тарасова М.Н., Лазуткина Ю.С. Изучение физико-химических свойств компонентов растворителей в производстве эпоксидных грунтовок. 3-я Всероссийская научно-техническая конференция студентов, аспирантов и молодых ученых «Наука и молодежь». Секция «Химические технологии». Подсекция «Химическая техника и инженерная экология». Алтайский государственный технический университет им. И.И. Ползунова. Барнаул: изд-во АлтГТУ; 2006. С. 27-28.

12. Mato F., Bonilla D., Benito G. Liquid-vapor equilibrium of the *n*-heptane-isobutyl acetate, toluene-isobutyl acetate, and toluene-*n*-butyl acetate systems at 760 mmHg. *An. Ouim.* 1991;87:660-663.

13. Carr A.D., Kropholler H.W. Vapor Liquid Equilibria at Atmospheric Pressure. Binary Systems of Ethyl Acetate-Benzene, Ethyl Acetate-Toluene, and Ethyl Acetate-*p*-Xylene. *J. Chem. Eng. Data.* 1962;7(1):26-28.

https://doi.org/10.1021/je60012a007

14. Gupta B.S., Lee M.-J. Isobaric vapor-liquid equilibrium for binary systems of toluene + *o*-xylene, benzene + *o*-xylene, nonane + benzene and nonane + heptane at 101.3 kPa. *Fluid Phase Equilib.* 2013;352:86-92.

https://doi.org/10.1016/j.fluid.2013.05.016

15. Коган В.Б. Азеотропная и экстрактивная ректификация. 2 изд. Л.: Химия; 1971. 432 с.

5. Green D.W., Southard M.Z. (Eds.). Approximate Multicomponent Distillation Methods. In: Perry's Chemical Engineers' Handbook. New York, USA: McGraw-Hill Education; 2019. Section 13. P. 25-28.

6. Mavletkulova P.O., Serafimov L.A., Danilov R.Yu. Comparative Analysis of Sharp Separation Regimes in the Distillation of Ternary Zeotropic Mixtures. *Theor. Found. Chem. Eng.* 2014;48(5):622-628.

https://doi.org/10.1134/S0040579514050200

7. Serafimov L.A., Chelyuskina T.V., Mavletkulova P.O. Special Distillation Regime Involving an Infinite Reflux Ratio and an Infinite Number of Separation Stages. *Theor. Found. Chem. Eng.* 2014;48(1):48-54.

https://doi.org/10.1134/S0040579514010138

8. Khalili-Garakani A., Ivakpour J., Kasiri N. Threecomponent Distillation Columns Sequencing: Including Configurations with Divided-wall Columns. *Iranian J. Oil Gas Sci. Technol.* 2016;5(2):66-83.

https://dx.doi.org/10.22050/ijogst.2016.15799

9. Frolkova A.V., Peshekhontseva M.E., Gaganov I.S. Sharp separation for quatrenary mixtures. *Tonk. Khim. Tekhnol.* = *Fine Chem. Technol.* 2018;13(3):41-48 (in Russ.). https://doi.org/10.32362/24106593-2018-13-3-41-48

10. Kleymenova M.N., Komarova L.F., Lazutkina Y.S. Technology for Treatment of Solvents' Liquid Waste from Silicone Enamels Production. *Ekologiya i promyshlennost' Rossii = Ecology and Industry of Russia.* 2014;3:11-15 (in Russ.).

11. Il'ina E.S., Tarasova M.N., Lazutkina Yu.S. The study of the physicochemical properties of solvent components in the production of epoxy primers. In: Proc. 3rd Russian scientific and technical conference of students, postgraduates and young scientists "Science and Youth." Section "Chemical technologies." Subsection "Chemical engineering and engineering ecology." Barnaul: Polzunov Altai State Technical University; 2006. P. 27-28 (in Russ.).

12. Mato F., Bonilla D., Benito G. Liquid-vapor equilibrium of the *n*-heptane-isobutyl acetate, toluene-isobutyl acetate, and toluene-*n*-butyl acetate systems at 760 mmHg. *An. Quim.* 1991;87:660-663.

13. Carr A.D., Kropholler H.W. Vapor Liquid Equilibria at Atmospheric Pressure. Binary Systems of Ethyl Acetate-Benzene, Ethyl Acetate-Toluene, and Ethyl Acetate-*p*-Xylene. *J. Chem. Eng. Data.* 1962;7(1):26-28.

https://doi.org/10.1021/je60012a007

14. Gupta B.S., Lee M.-J. Isobaric vapor-liquid equilibrium for binary systems of toluene + *o*-xylene, benzene + *o*-xylene, nonane + benzene and nonane + heptane at 101.3 kPa. *Fluid Phase Equilib.* 2013;352:86-92. https://doi.org/10.1016/j.fluid.2013.05.016

15. Kogan V.B. *Azeotropnaya i ekstraktivnaya rektifikatsiya* (Azeotropic and extractive distillation). Leningrad: Khimiya; 1971. 432 p. (in Russ.).

Об авторах:

Пешехонцева Маргарита Евгеньевна, студентка кафедры химии и технологии основного органического синтеза Института тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет» (119571, Россия, Москва, пр-т Вернадского, д. 86). Е-mail: peshekhontseva-m@mail.ru. https://orcid.org/0000-0002-9446-2462

Маевский Марк Александрович, аспирант кафедры химии и технологии основного органического синтеза Института тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО, «МИРЭА - Российский технологический университет» (119571, Россия, Москва пр-т. Вернадского, 86, Москва,). E-mail: markhirurg@list.ru. https://orcid.org/0000-0002-7752-4115 **Гаганов Иван Сергеевич,** студент кафедры химии и технологии основного органического синтеза Института тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет» (119571, Россия, Москва, пр-т Вернадского, д. 86). E-mail: ivan.gaganov@yandex.ru. https://orcid.org/0000-0003-4837-2332

Фролкова Анастасия Валериевна, кандидат технических наук, доцент кафедры химии и технологии основного органического синтеза Института тонких химических технологий им. М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет» (119571, Россия, Москва, пр-т Вернадского, д. 86). E-mail: frolkova_nastya@mail.ru. https://orcid.org/0000-0001-5675-5777, ResearcherID N-4517-2014

About the authors:

Margarita Ye. Peshekhontseva, Student, Department of Chemistry and Technology of Basic Organic Synthesis, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow, 119571, Russia). E-mail: eshekhontseva-m@mail.ru. https://orcid.org/0000-0002-9446-2462

Mark A. Maevskiy, Postgraduate Student, Department of Chemistry and Technology of Basic Organic Synthesis, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow, 119571, Russia). E-mail: markhirurg@list.ru. https://orcid.org/0000-0002-7752-4115

Ivan S. Gaganov, Student, Department of Chemistry and Technology of Basic Organic Synthesis, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow, 119571, Russia). E-mail: ivan.gaganov@yandex.ru. https://orcid.org/0000-0003-4837-2332

Anastasiya V. Frolkova, Cand. of Sci. (Engineering), Associate Professor, Department of Chemistry and Technology of Basic Organic Synthesis, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow, 119571, Russia). E-mail: frolkova_nastya@mail.ru. https://orcid.org/0000-0001-5675-5777, ResearcherID N-4517-2014

Поступила: 10.01.2020; Получена после доработки: 27.01.2020; Принята к опубликованию: 11.05.2020. Submitted: January 10, 2020; Reviewed: January 27, 2020; Accepted: May 11, 2020.