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In this paper the finite element method (FEM) is used to solve three problems that are of
the paramount importance in Chemical Engineering. The first problem is related with the
bidimensional flow of an ideal fluid around a cylindrical body, and the objective is to determine
the velocity distribution of the flow. To model the flow, the potential formulation is used to
obtain an analytical solution, and then, the approximated solution obtained by using FEM is
compared with the analytical solution. From this comparison, it is deduced that both solutions
have a good agreement. The second problem is the calculation of the temperature profile in a
two-dimensional body with specified boundary conditions. This problem is modeled by the
two-dimensional Laplace equation, and from the problem data and using variables separation,
an analytical solution was obtained. Then, FEM was used to obtain an approximate solution
and compared with analytical ones. Besides, from this comparison, it is concluded that both
solutions agree. Finally, in the third problem the temperature distribution in a bidimensional
body with internal heat generation is studied. This problem is modeled by Poisson equation in
two dimensions, but due to the boundary conditions and the complications that arise by adding
some heat sources in the final FEM discretization, the problem does not have an analytical
solution. However, the analysis of FEM solution indicates that this solution is correct.
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B cmambe paccmompeHo npumeHeHue mMemooa KoHeuHblx anemermos (MKD) ons pewerus mpex sa-
dau, UMEULUX 8AXKHOE SHAUCHUE NPU MOOCUPOSAHUL XUMUKO-MexXHOo/I02uUeckux npoyeccos. Ilep-
8asl 3a0aua cesi3aHa ¢ obmeKaHuem 08YMepHbLM NOMOKOM UOEATbHOU JKUOKOCMU UUNUHOPUUECKO20
mena, yenrbio ee s8/slemecst pacuem pacnpeoesieHust CKopocmu YykasaHHoeo nomorxa. Pesyabsmamot
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AHAUMUUECK020 peuleHust OaHHOU 3a0aull CPABHUBAIOMCS C Pe3YIbMAMAMU YUCEHHO20 PeuLeHUs.,
noayueHHozo ¢ uchonwvsoearuem MKD. IlokazaHo, umo pe3ytemambl 060UX peuleHUll XOPoulo Co2Na-
cyromest mexoy coboti. Bmopasi sadaua — pacuem npogunisi memnepamypsl 8 08YMEPHOM mese C
300AHHBIMU ZPAHUUHBIMU YCA08USMU. [INst peuleHUst 9motl 3a0aui UCNOIb308AHO 08YMepHOe Ypas-
HeHue Aansiaca u memoo pasdeneHus: nepemeHHblx. TIonyueHHoe aHAUMuUYecKoe peueHue marike
CPasHUBAEMCSL C UWUCTIEHHbIM peuleHuem, HatideHHbm nocpedcmeom MKD. Kaxk u e npedvbloyuiem
cnyuae, ommeueHo Xopouiee Conaco8aHue NolYyueHHsblx pesyromamos. Harxorney, mpemueli 3adaveti
slesslemest OnUCaHue pacnpeoesieHust memnepamypol 8 08YMepHOM mese ¢ HYMpeHHel menioom-
oaueti. [Ins. Mooenupo8aHus NpumeHeHo 0symepHoe ypasHeHue Iyaccora. OOHako 3a0aua 8 OaHHOM
cnyuae He umeem AHAUMUYECK020 peuleHUsl. AHAIUS3 YUCEHHO20 peuleHUst Ha ocHoge MKD yrasbl-
eaem Ha e20 KOPPeKmHoOCMb.

Knroueesle cnosea: aHaniumuueckoe peweHue, YucieHHoe peuleHue, ypasHeHue Aannaca, ypas-
HeHue Hyaccona, memoo nomeHyuasioe 8 meopuu menﬂonepedattu U MexaHuKe CniouHou Cpedbl,

Memo0 KOHEeUHbLX JIeMEeHMO8.

1. Introduction

For solving complex engineering problems, it is
necessary to have methods that be computationally
effective. Ideally, an effective computational method
should have the following features:

1. It should have a sound mathematical as well as
physical basis (i.e., yield convergent solutions and be
applicable to practical problems).

2. It should not have limitations with regard to the
geometry, the physical composition of the domain, or the
nature of the ‘loading’.

3. The formulative procedure should be
independent of the shape of the domain and the specificity
of the boundary conditions.

4. The method should be flexible enough to allow
different degrees of approximation without reformulating
the entire problem.

5. It should involve a systematic procedure that
can be automated for use on a computer.

The finite element method is a technique in
which a given domain is represented as a collection
of simple domains called finite elements, so that it is
possible to systematically construct the approximation
functions needed in a variational or weighted-residual
approximation of the solution of a problem in each
element (Hughes [1], Lewis etal. [2], Zienkiewicz-Taylor
[3, 4], Ciarlet [5-7]). Thus, the finite element method
differs from the traditional Rayleigh-Ritz, Galerkin, least
squares, colocation, and other weighted-residual methods
in the manner in which the approximation functions are
constructed. But this difference is responsible for the
following three basic characteristics of the finite element
method:

1. Division of whole into parts, which allows
representation of geometrically complex domains as
collections of geometrically simple domains that enable
a systematic derivation of the approximation functions.

2. Derivation of approximation functions over each
element; the approximation functions are often algebraic
polynomials that are derived using interpolation theory.

3. Assembly of elements, which is based on
continuity of the solution and balance of internal fluxes;
the assemblage of elements represents a discrete analog
of the original domain, and the associated system of
algebraic equations represents a numerical analog of the
mathematical model of the problem being analyzed.

These three features, which constitute three
major steps of the FEM formulation, are already
closely related. The geometry of the elements used to
represent the domain of a problem should be such that
the approximation functions can be uniquely derived.
The approximation functions depend not only on the
geometry, but also on the number and location of
points, called nodes, in the element and the quantities
to be interpolated (e.g., solution, or solution and its
derivatives). Once the approximation functions have
been derived, the procedure to obtain algebraic relations
among the unknown coefficients (which give the values
of the solutions at the nodes of finite elements) is exactly
the same as that used in the Rayleigh-Ritz and weighted-
residuals (Gelfand-Fomin [8], Weinstock [9]). The FEM
not only overcomes the shortcomings of the traditional
variational methods, but it is also endowed with the
features of an effective computational technique.

2. Theoretical Basis

2.1.Mathematical Preliminaries

To understand how a differential equation set in a
given bounded domain of the plane, is modeled by the
use of the FEM, consider the following elliptic partial
differential equation:

-V -(cVu)+au= f on Q, (1)

where Q is a bounded domain of the plane;
a(x,y),c(x,y), f(x,y)and the unknown u(x, y)
are functions defined on Q. The specified boundary
conditions are a combination of and its normal derivative
on the boundary:
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» Dirichlet: hu = r on 0Q.

*  Generalized Neumann: 1 -(cVu)+qu =g on
oQ.

*  Mixed: applicable only to differential partial
equations system.

The vector 71 is the outer unit normal vector,
g(x,¥),q(x,¥),h(x,y)and u(x,y)are functions
defined on OQ.

For the discretization (division) of Q in subdomains,
triangles are used (Hutton [10], Bhatti [11], Chandrupatla
[12]).If u, (x, ) is alinear polinomial in two variables,
ie., if u,(x,y) =, + a,x + o,y inside each triangle,
itis not clear what a second derivative term means. Inside
of the triangle, Vi, is a constant (because U 5 1s flat),

and thus the second derivative vanishes. At the edges
of the triangles, ¢Vu,, is in general discontinuous, and

further derivatives make no sense. Since U is only an
approximation, it follows that:

=V (cVu,)+au, - f =R(x,y) %0 , 2)

where is called the residual.

What is looked for is the best approximation of
u in the class of continuous piecewise polynomials.
Therefore, the equation for U, is tested against all
possible functions v(x, y) of that class. Testing formally
means to multiply the residual against any function and

integrate, i.e., determine U, such that:
IQ[—V~(cVuh)+auh—f]vdxdyzO (3)

for all possible V. The functions V are usually called tes?
functions.
The Eq. (3) is integrated by using Green’s formula

(Evans [13]). Therefore, U, should satisfy:

IQ[(cVuh YWV +au,v]dx dy—'[mﬁ (cVu,) vds = J.va dxdy, Vv, (4)

where O is the boundary of €, and ds is the
arclenght differential on the boundary. Note that the
integrals of this formulation are well-defined even if

U, and V are piecewise linear functions.
Boundary conditions are included in the following

way: if U, is known at some boundary points

(Dirichlet and boundary conditions), the test functions

are restricted to v = 0 in those points and require U,
to attain the desired value at those points. At all other
points, generalized Neumann conditions are imposed, i.e.,
(CVu " ) n+qu, = g . The FEM formulation reads:

find U, such that

IQ [(cVuh Vv + auhv] dxdy — _LQ] qu,vds = J;) fvdxdy+ J;Ql gvds, Vv. (5)

In Eq. (5) ©€, is the part of boundary with
Neumann conditions. The test functions V must be zero
on 6Q — 89, .

Any  continuous
is represented as a

uh(xay) :Zci¢i(xﬂy)’

where ¢, are piecewise continuous functions, and C,
are scalar coefficients. Choose ¢, like a tent, such that
it has the height 1 at the node i and the height 0 at all
other nodes. For any fixed v, the FEM formulation
yields an algebraic equation in the unknowns C. It
is necessary to determine N unknowns, so N different
instances of Vare needed. What better candidates than

piecewise
linear

linear u,
combination

V=0, j=1,2,...,N? This gives a linear system
KC = F, where the matrix K and the right-hand vector
F contains integrals in terms of functions ¢, 9, and the
coefficients defining the problem: ¢, a, f, ¢ and g. The
solution vector C contains the expansion coefficients of

U, , which are also the values of © p at each node.

3. Computational aspects of FEM

From previous exposition, it is deduced that for the
FEM applications, computer programs that help in the
many calculations involved in such method are needed.
The following are the main steps that are necessary
for solving through FEM, physical problems that are
governed by partial differential equations (case of the
present work):

1. Preprocessing. In this step the following is
considered:

*  Meshing: the bidimensional region € is divided
in triangles. It is necessary to have a computer program
for this task.

*  Geometrical and physical data related with the
problem at hand.

e The assemble of triangular element equations
for obtaining the final system of algebraic equations. For
linear problems, this system is linear.

2. Processing. This consists in the solution of
equations system for obtaining the nodal values of the
scalar quantity that is being approximated.
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3. Postprocessing. Calculation of solution gradients
and other variables of interest; and presentation of results
in tabular or graphical form.

To solve the problems of this paper, a Matlab®
based program was written that implements the main
steps of FEM.

4. Examples

4.1. Example 1

4.1.1. Statement

Determine the velocity distribution for the irrotational
flow of an ideal fluid around a cylindrical body, 40 mm in
diameter, centered between two parallel walls which are 80
mm apart. The fluid has a uniform velocity of 40 mm/s at a
location far removed from the cylinder (see Figure 1).

L e

> 40mm

Jo=40mm/s 80mn
os —
_— — 40mm
—
_—> G E—

Fig. 1. Flow around cylindrical body.

4.1.2. Mathematical model

For a dimensional and incompressible flow, the
continuity equation (Cengel-Cimbala [14], Reddy [15])
is written as:

ou Ov
ML Py, ©6)

ox 0Oy
where and are the vertical and horizontal components of
the velocity V of the fluid. The flow is called irrotational,
if =0, which implies:

u_ov_,. @)

oy ox

The irrotational flow of an ideal fluid may be
formulated in terms of a stream function or in terms of a
potential velocity. The potential formulation is used here.

The potential velocity, ¢(x, ), is defined by:

__9 _ 0¢
o (8)

From Eq. (8), it follows that:

2 2
u_v__09 09 _ 9)
oy Ox  0Oyox Oxoy

Eq. (9) means that the irrotational condition, Eq. (7),
is satisfied automatically.
From continuity equation (6), it is obtained:

99 9 _y 10
ox> oy’ (10
or

2 2
vig=2,99_y (11
X~ Oy

The Eq. (11) is the bidimensional Laplace equation.
The normal component to fixed boundary is:

v =%=0 (12)
on
or
V,,Z%cos0+%sen6’=0. (13)
Ox oy

In polar coordinates, the function ¢(x, y) satisfies the
following BVP (Edwards [16]):

r2¢rr+r¢r+¢€9=0’ r>0
lim[ §(r,0)-U,rcos@ =0, (14)

#(R,0)=0, ¢(r,0)=¢(r,~0).

Using the separation variables method, the solution
of BVP (14) (Asmar [17]) is:

2
Po(r,0)=U,_ (r+R—J0050. (15)
r

It is possible, from (15), to derive expressions for u,
v, u, u, 1, 0 being the polar coordinates, R the cylinder
radius, and U_ is the velocity of approximation of the
fluid to cylinder.

4.1.3. Solution

The triangular mesh that was used for the solution of
the problem is shown in Figure 2. The mesh has 445 nodes
and 64 triangular elements. The boundary conditions of
the problem are shown in Figure 3. The symmetry of the
geometrical configuration makes possible to analyze a
cylinder quadrant.

A form to validate the solution obtained from FEM is
to compare its solution with the value U, =40 mm / s
in the left border of Figure 2 where are located the nodes
37,38, 39, 40, 41, 42, 43, 44 and 45.
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In these nodes, the horizontal component of the velocity has the following values:
40.99 40.52 40.45 40.24 40.03 39.89 39.81 39.67 39.31

BT 4=
F 18 10 2
5 17 ] 1
"J Al 2
8 20 12 4
il 19 11 3
5. B t 3
30 22 14 B
28 2 13 5
1:—-"""‘—"-
1 24 16 B
H 23 15 ki
57 a8 = # 34 =
58 = o 5
59 St a4 e
52
& ar
53
51 5 & 36
g2
a8
- 5 a7
o 8 48 40
" -

Fig. 2. Triangular mesh for Example 1.

ad
50
A y
i)
"% = Ue
B i)
el

Fig. 3. Boundary conditions for the potential formulation.

These values are close to the value U_ = 40 mm / s .
Therefore, the FEM solution is a good approximation to
the solution of the considered problem.

4.2. Example 2
4.2.1. Statement

Use the FEM to calculate the temperature
distribution in the dimensional body shown in Figure 4
and compare its results with the analytical solution.

4.2.2. Mathematical model

The mathematical model of the problem is the
bidimensional Laplace equation V?7 =0, where
T =T(x,y), is the temperature. The boundary
conditions consist of specified temperature in
inferior border and insulation in superior border;
the left border is subjected to a heat flux, and the
right, to convection with specified surrounding
temperature.

Insulated
> .
r Convection
»
Air flow
q,=-50W/m? ViT=0 Im

| .

Steel

k=380.7W/m* °C B=113.5W/m? °C
-
Ll

T =100°C
< Im »

» A
>

Ty = 50°C

Fig. 4. Graphics for Example 2.
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4.2.3. Solution
By using the separation of variable method (Asmar [17]), the analytical solution of the problem is:

Sen [(2;1 +1)r ;J(:osh [(2;1 +1)r 2’;}

reo -1, + 0TS
T

= n+ 1)[(2;1 + 1)2% Senh [(2;1 + 1)’2”‘;} + 3 Cosh [(2;1 + 1)’2’;’ﬂ

Sen [(2;1 + 1)’2} {Cosh[@n + 1)”;} — Tanh [(211 + l)ﬂba}Senh {(211 + 1)’;"}}

(2n+1) Tanh [(2,1 + 1)7261}

(16)

o0

4bM
krz? ;

Now, the solution by FEM is presented. Figure 5 shows the triangular mesh of region in Figure 4. The mesh has
121 nodes and 200 triangular elements.

L LT 1, E ] ] u 1 i 0, s
'(r’/ﬂ = L] " = "= = _I./'B = /m
¥ H L L]
/ n {/ ™ m w w m wa wa _-/ﬁ _-/;l!
1, 14 s, 8l = o 1o, |=l|_/ i I
/ﬂl /m [ 1w = ] = w| S w " 1m
m/ m.-"/ 3 = - nl/ £3 = !
@ = = w = tH = [ i i
o
7" e i =, 1, 1t 1 G, |}/ i
Ao m ] w = i uis " W s
U i e Pidalr el
-

Fig. 5. Triangular mesh for the Example 2.

In Table 1 the analytical and FEM solution for 18 nodes FEM and analytical solution. In particular, the FEM solution
are shown. This table shows the good agreement between reproduces the temperatures specified in the nodes.

Table 1. Analytical and FEM solutions for Example 2

Node | X (m) | Y (m) T, °C T exac., °C | Error Node | X(m) | Y (m) T °C T exac., °C | Error
1 0.0 0.0 50.00 50.0 0.00 10 0.9 0.0 50.00 50.0 0.00
2 0.1 0.0 50.00 50.0 0.00 11 1.0 0.0 50.00 50.0 0.00
3 0.2 0.0 50.00 50.0 0.00 12 0.0 0.1 50.68 50.67 -0.10
4 0.3 0.0 50.00 50.0 0.00 13 0.1 0.1 50.69 50.69 0.00
5 0.4 0.0 50.00 50.0 0.00 14 0.2 0.1 50.72 50.72 0.00
6 0.5 0.0 50.00 50.0 0.00 15 0.3 0.1 50.77 50.77 0.00
7 0.6 0.0 50.00 50.0 0.00 16 0.4 0.1 50.84 50.85 0.01
8 0.7 0.0 50.00 50.0 0.00 17 0.5 0.1 50.95 50.96 0.01
9 0.8 0.0 50.00 50.0 0.00 18 0.6 0.1 51.08 51.11 0.03
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4.3. Example 3

4.3.1. Statement

Use the FEM to calculate the temperature
distribution in the dimensional body shown in Figure 6.
The dimensions of the body are 5x12 m.

~ Insulating

v

-5 F
Q) = SO0W Steal
Tom=230°C
- k =16.6W/m* *C
- B =S0W/me
-
T !
% Air flow
To=150"C 3
ot M s h | v
Y,
.
€ = SOW ™
o
R
-
X

——

Fig. 6. Graphics for Example 3.

To=100°C

4.3.2. Mathematical model
The partial differential equation that models

the problem is the Poisson equation V'T =(Q, where
T =T (x, y),and Q is the heat generation in units of E/m?.
The boundary conditions are: specified heat flux in the
straight sides of left side and specified temperature in the
curve part of the left side; the superior side is insulated;
the inferior side has a specified temperature; and the
right side has convection with surroundings. The value
of O will be specified later (see Solution).

i

12

Fig.7. Triangular mesh for Example 3.

4.3.3 Solution

The figure 7 shows the triangular mesh for the
bidimensional region of Figure 6. It has 36 nodes and
48 triangular elements. After discretization, nodal heat
sources of Q= 4000 W/m? are added to nodes 6, 18 and
31; and to elements 15 and 34. This problem does not
have an analytical solution.

In Table 2 the results obtained by FEM are presented.
As it is expected, the FEM solution reproduces the correct

Table 2. Nodal coordinates and temperatures for the Example 3

Node X (m) Y (m) T, °C Node X (m) Y (m) T, °C
1 0.000 4.000 150.00 19 4.000 6.000 122.30
2 0.000 2.667 193.70 20 5.000 6.000 47.65
3 0.000 1.333 143.60 21 1.848 6.765 150.00
4 0.000 0.000 100.00 22 2.899 7.510 166.60
5 0.765 4.152 150.00 23 3.949 8.255 147.00
6 1.344 2.768 243.50 24 5.000 9.000 61.14
7 1.922 1.384 159.40 25 1.414 7.414 150.00
8 2.500 0.000 100.00 26 2.609 8.943 214.10
9 1.414 4.586 150.00 27 3.805 10.470 169.70
10 2.609 3.057 214.80 28 5.000 12.000 58.42
11 3.805 1.529 154.30 29 0.765 7.848 150.00
12 5.000 0.000 100.00 30 1.344 9.232 201.60
13 1.848 5.235 150.00 31 1.922 10.620 266.50
14 2.899 4.490 169.80 32 2.500 12.000 223.70
15 3.949 3.745 157.40 33 0.000 8.000 150.00
16 5.000 3.000 85.69 34 0.000 9.330 175.50
17 2.000 6.000 150.00 35 0.000 10.670 188.50
18 3.000 6.000 202.90 36 0.000 12.000 187.80
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temperatures, where they are specified. The high temperatures
are located in nodes or in the vertices of triangles, where heat
sources are specified. The nodes with specified heat source
are 6, 18, and 31, and the corresponding temperatures are
243.5,202.9 and 266.5 °C. The elements with specified heat
source are 15 and 34. The vertices of element 15 are the
nodes 10, 11 and 15, and their temperatures are 214.8, 154.3
and 157.4 °C. The vertices of element 34 are the nodes 23,
26 and 27, and their temperatures are 147,214.1 and 169.7 °C.
The maximum temperature is located at node 31 with value
266.5 °C that corresponds to a node with a specified heat
source. The above considerations permit to conclude that the
FEM solution is correct.
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