ХИМИЯ И ТЕХНОЛОГИЯ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ И БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ

УДК 547.979.733

СИНТЕЗ *МЕЗО*-ТЕТРАЗАМЕЩЁННЫХ ПОРФИРИНОВ, СОДЕРЖАЩИХ ФОСФОРИЛЬНЫЕ И АЗОФЕНИЛЬНЫЕ ГРУППЫ

Я.Ф. Аль Ансари, аспирант, *В.Е. Баулин, ведущий научный сотрудник,

Е.В. Савинкина, доцент, А.Ю. Цивадзе, зав. кафедрой кафедра Неорганической химии МИТХТ им. М.В. Ломоносова * Институт физической химии и электрохимии им. А.Н. Фрумкина РАН e-mail: e.savinkina@mail.ru

интезированы новые мезо-тетразамещённые порфирины, представляющие интерес в качестве гетеротопных лигандов. Соединения исследованы методами ИК- и электронной спектроскопии поглощения, MALDI-TOF-масс-спектрометрии.

Ключевые слова: мезо-тетразамещённый порфирин, азогруппа, фосфорилсодержащий порфирин.

Порфирины, благодаря природному происсвоеобразному хождению И строению, представляют огромный научный и практический интерес. Необычные электронные спектры поглощения и возможности модификации молекул порфиринов выдвинули их в ряд первоклассных красителей. Электронное строение молекул порфиринов придает им свойства преобразователей световой энергии химических, электрохимических и [1-3],фотокатализаторов [4-6]. В настоящей работе синтезированы порфирины, содержащие оазофенильные группировки и фосфорильные группы. Азосоединения интересны благодаря своей способности к иис-транс-изомеризации под действием света. Фосфорильная группа обладает высокой координирующей способностью [7], поэтому изучение фосфорилсодержащих лигандов представляет значи-Преимуществом интерес. таких тельный лигандов является возможность изменять координирующие свойства фосфорильной группы путем замены заместителей при атоме фосфора. Введение этих фрагментов открывает дополнительные возможности для координации порфириновыми лигандами катионов металлов.

Результаты и их обсуждение

Задачу синтеза гетеротопного лиганда решали, исходя из наиболее простого в получении 5,10,15,20-тетракис(*о*-аминофенил)порфирина (1), способного к дальнейшей функционализации благодаря нуклеофильным свойствам аминогруппы. Он широко используется для получения разнообразных замещённых порфиринов. В литературе описаны три основных метода модификации аминогруппы порфиринов. Основной метод – это ацилирование с использованием различных хлорангидридов в качестве ацилирующих агентов [8–11]. Конденсацией аминопроизводных порфиринов с альдегидами и кетонами получают основания Шиффа [12]. Третий путь – это диазотирование и азосочетание аминопорфиринов с различными фенолами [13].

Для получения порфирина L¹ (схема 1) использовали первый из приведённых методов модификации аминогруппы. Порфирин 1 функционализировали 2-хлорацетилхлоридом с целью введения электрофильного фрагмента, способного к взаимодействию с 2-(дифенилфосфорил)фенолом. Последующее нуклеофильное замещение атома хлора на феноксигруппу привело к целевому продукту L¹.

Синтез L^2 проводили согласно схеме 2, используя реакцию азосочетания.

Для установления строения полученных соединений были использованы спектральные методы.

ЭСП соединений (рис. 1) содержат характерные для порфиринов четыре полосы низкой интенсивности в видимой области спектра (О-полосы), относящиеся к квазизапрещённым п-п*-электронным (полосы I и III) и электронно-колебательным переходам (полосы II и IV), и одну интенсивную полосу в фиолетовой части спектра (полосу Cope), отвечающую разрешённому электронному переходу.

Наблюдаемые изменения в ЭСП соединений L^1 и L^2 по сравнению с ЭСП исходного *мезо*-тетракис(*о*-аминофенил)порфирина (1) (ЭСП в СНСl₃: 653, 591, 550, 516, 422 нм [14]) состоят в следующем: батохромно смещены полосы II, III, IV и полоса Соре; полоса I порфирина L^1 смещена в коротковолновую область, а L^2 – в длинноволновую. Кроме того, в ЭСП L^2 присутствует шестая полоса при 328 нм. С

учетом литературных данных [15] можно предположить, что она отвечает за π - π *-электронный переход связи N=N.

Отнесение полос в ИК-спектрах сделано сопоставления на основе полученных результатов с литературными данными [16]. В спектрах L^1 и L^2 наблюдаются полосы колебаний пиррольных NH-групп. В области 1000 см⁻¹ присутствует интенсивная полоса, которую относят к валентным колебаниям связи пиррольных атомов $C_{\beta}-C_{\beta}$ И плоскостным деформационным колебаниям связи С_в-Н. ИК-спектр L¹ содержит полосу валентных колебаний амидной связи С=О и полосу амид II при ~1560 см⁻¹. В области 1120 см⁻¹ находятся колебания группы Р=О. В ИКспектре L² присутствуют полосы колебаний N=N-связи.

Как известно, мезо-тетрафенилпорфирины, имеющие заместители в фенильных кольцах в орто- и мета-положениях, существуют в виде смеси атропоизомеров [17]. Порфирин L¹, как выявлено методом ЯМР-спектроскопии, имеет изомеры. Порфирин L² представляет собой смесь цис- и транс-изомеров, что выявлено методом тонкослойной хроматографии на пластинах Sorbfil (сорбент – силикагель) и подтверждается методами ИК- и ¹Н-ЯМРспектроскопии. Спектры ¹Н-ЯМР соединений \mathbf{L}^1 \mathbf{u} \mathbf{L}^2 содержат большое количество которых сигналов. отнесение не представляется возможным. В спектрах обоих соединений наблюдается по два сигнала NHпротонов (б, м.д.) L¹: -3.05; -3.20; L²: -2.33, Выделить в индивидуальном виде -2.45). изомеры не удалось.

Выход L^2 ниже, чем L^1 , что связано с неустойчивостью промежуточного диазокатиона, который частично разрушается с выделением азота и образованием *мезо*тетрафенилпорфирина.

Полученные соединения наряду с

порфириновыми циклами, представляющими собой центры связывания катионов металлов, содержат дополнительные группировки, также способные проявлять координационную активность. Они являются новыми перспективными лигандами для получения комплексных соединений d- и f-элементов с необычными свойствами. Хотя данные соединения получены в виде смеси изомеров, есть основания предполагать, что катионы d- и *f*-элементов будут избирательно координировать лишь один из изомеров, дающий наиболее прочное или наименее растворимое комплексное соединение.

Экспериментальная часть

работе использовали коммерчески B доступные о-нитробензальдегид «х.ч.» (Acros Organics), метанол (Lab-Scan) марки «для хроматографии», изопропиловый спирт «х.ч.» (Химический реактив), гидрид натрия, 60% суспензия в минеральном масле (Acros Organics), гидроксид натрия «ч.д.а.» (Химмед), дигидрат хлорида олова(II) 98% (Acros Organics). Колоночную хроматографию осуществляли на нейтральной активированной окиси алюминия (Брокман I) (Acros Organics). Пиррол 99% (Acros Organics) использовали свежеперегнанным (т. кип. 131°С). ТГФ 99+% Organics) перегоняли (Acros нал алюмогидридом лития (т. кип. 66°С). Хлороформ марки «х.ч.» предварительно сушили над CaCl₂ и перегоняли над CaH₂ (т. кип. 61°С). уксусную кислоту «Ледяную» получали вымораживанием уксусной кислоты «х.ч.» (Химический реактив). Диоксан несколько часов кипятили над металлическим натрием, затем перегоняли (т. кип. 101°С).

Электронные спектры поглощения (ЭСП) в видимой и УФ-областях в хлороформе

регистрировали на спектрофотометре Cary-100 в кварцевых кюветах толщиной 10 мм. Спектры приведены на рис. 1.

MALDI-TOF-масс-спектры получены на масс-спектрометре Reflex-III фирмы Bruker Daltonics. В качестве матрицы использовалась 2,5-дигидроксибензойная кислота. Спектры приведены на рис. 2.

ИК-спектры были зарегистрированы на приборах Infralum FT-02 в области 4000–100 см⁻¹. Образцы готовили в виде суспензий в вазелиновом масле и гексахлорбензоле.

Спектры ¹Н-ЯМР записывались на спектрометре Bruker DPX 300. Внутренним стандартом для определения химических сдвигов ядер ¹Н служили сигналы остаточных протонов CDCl₃ – 7.25 м.д.

Содержание азота, углерода, водорода определяли методом элементного анализа на приборе CARLO ERBA STRUM.DP20.

5,10.15,20-Тетракис(*орто*-аминофенил)порфирин (1) получали по методике, описанной в работе [14], восстановлением дигидратом хлорида олова(II) 5,10,15,20тетракис(*о*-нитрофенил)порфирина, который, в свою очередь, синтезировали из пиррола и *о*-нитробензальдегида по методике, описанной в работе [8].

5,10.15,20-Тетракис(*орто*-хлорацетамидофенил)порфирин (2) синтезировали согласно методике, представленной в работе [18].

5,10.15,20-Тетракис(*орто-*(2-(2-(дифенилфосфорил)фенокси)ацетамидо)фенил)порфирин (L¹)

Смесь 2-(дифенилфосфорил)фенола (0.4697 г; 0.0016 моль) и гидрида натрия (0.064 г 60% суспензии в вазелиновом масле; 0.0016 моль) В диоксане кипятили до прекращения выделения газа И полного растворения фенола. После к раствору добавляли порфирин 2 (0.3912 г; 0.0004 моль) и полученную смесь выдерживали при кипячении 6 ч. Раствор упаривали с помощью роторного вакуумного испарителя, сухой остаток растворяли в хлороформе и наносили на колонку с нейтральной окисью алюминия, элюент хлороформ – метанол, 10 : 1. Выход: 0.4826 г (60%). Вычислено для C₁₂₄H₉₄N₈O₁₂P₄: С, 74.02; H, 4.71; N, 5.57. Найдено: С, 73.91; H, 4.26; N, 5.91. ЭСП (CHCl₃), λ_{max}, нм (log ε): 649 (3.18), 592 (3.74), 552 (3.68), 518 (4.24), 425 (5.48). ИК-спектр (см⁻¹): 3374, 3317 (ν_{NH}), 3062 ($\nu_{Саром.-H}$), ν_{CH} макроцикла), 2361, 1686 ($\nu_{C=O}$), 1592 ($\nu_{C=C \ {\mbox{6}eh307b}Hbe}$), 1559 (δ_{NH} (амид II)), 1472 ($\nu_{C\alpha-C}$ сm), 1445, 1438, 1527 и 1348 (ν_{C-C} пиррольные), 1304 ($\nu_{Cалиф.-O}$), 1279 ($\nu_{Саром.-O}$), 1215, 1120 ($\nu_{P=O}$), 1105, 1071 ($\delta_{Саром.-H}$), 1049, 999 (δ_{CH} пиррольные и $\nu_{C\beta-C\beta}$), 982 и 969 (δ_{NH}), 802 (γ_{CH} пиррольные), 757 ($\gamma_{Саром.-H}$, $\pi_{скелетные}$), 736, 720 (γ_{NH} , $\nu_{C\alpha-N}$), 695 ($\pi_{скелетные}$).

5,10.15,20-Тетракис(*орто*-(1-гидрокси-4этилфен-2-илазо)фенил)порфирин (L²)

Соединение 1 (0.50 г; 0.00074 моль) растворили в 15 мл конц. соляной кислоты. К раствору при перемешивании и поддерживая температуру 0-5°С добавляли по каплям водный раствор NaNO₂ (0.2044 г; 0.00074 моль). Полученную смесь в тех же условиях прикапывали к раствору п-этилфенола (0.4338 г; 0.00356 моль) в 10 г 20% NaOH. pH конечного раствора составляет ~5. Выдерживали раствор 1 ч. Затем экстрагировали хлороформом, сушили MgSO₄, упаривали до объема 10 мл и переносили на колонку с нейтральной окисью алюминия, элюент хлороформ – изопропиловый спирт, 100 : 1. Выход продукта: 0.3768 г (42%). Вычислено для C₇₆H₆₂N₁₂O₄: C, 75.60; H, 5.18; N, 13.92. Найдено: С, 75.67; Н, 4.71; N, 12.28. ЭСП (CHCl₃), λ_{max}, HM (log ε): 655 (4.07), 598 (4.40), 561 (4.45), 524 (4.91), 427 (5.12), 328 (4.86). ИК-спектр (см⁻¹): 3318 (v_{NH}), 3062, 3027, 2964, 2929 (v_{Саром.-H}, v_{CH макроцикла}), 1587 (v_{C=C} бензольные), 1496 (v_{N=N} (*uuc*)), 1470 (v_{Cα-Cm}), 1455, 1409 (v_{N=N (транс})), 1348 (v_{C-C пиррольные}), 1279, 1209 (v_{Салиф.-О}), 1144, 1100, 1072 (v_{Саром.-О}), 1053, 1003 (δ_{CH} пиррольные и $\nu_{C\beta-C\beta}$), 979, 967 (δ_{NH}) , 994, 830, 799 (γ_{CH} пиррольные), 703, 753 $(\gamma_{Capom.-H}, \pi_{ckenethue}), 729 (\gamma_{NH}, \nu_{C\alpha-N}), 769$ $(\pi_{\text{скелетные}}).$

 C_{α}, C_{β} и $C_{m} - \alpha$ -, β - и *мезо*-углеродные атомы, соответственно.

В MALDI-TOF-масс-спектрах наблюдаются пики, соответствующие молекулярным ионам $\mathbf{L}^{1} - C_{124}H_{94}N_8O_{12}P_4^+$ (*m/z* 2012) и $\mathbf{L}^2 - C_{76}H_{62}N_{12}O_4^+$ (*m/z* 1207). Изотопное распределение согласуется с теоретически рассчитанным (рис. 2).

Рис. 2. MALDI-TOF-масс-спектры $L^{1}(a)$ и $L^{2}(b)$. На вставке в верхнем правом углу показано теоретически рассчитанное изотопное распределение.

ЛИТЕРАТУРА:

1. Highly efficient porphyrin sensitizers for dye-sensitized solar cells / W. M Campbell [et al.] // J. Phys. Chem. C. – 2007. – Vol. 111, № 32. – P. 11760–11762.

2. Sensitization effect of porphyrin dye on the photocurrent of Al/polythiophene schottky-barrier cells / K. Takahashi [et al.] // J. Phys. Chem. B. – 2003. – Vol. 107, № 7. – P. 1646–1652.

3. Jasieniak, J. Characterization of a porphyrin-containing dye-sensitized solar cell / J. Jasieniak, M. Johnston, E. R. Waclawik. // J. Phys. Chem. B. – 2004. – Vol. 108, № 34. – P. 12962–12971.

4. Nelson, A. P. Umpolung of a metal–carbon bond: a potential route to porphyrin-based methane functionalization catalysts / A. P. Nelson, S. G. DiMagno // J. Am. Chem. Soc. – 2000. – Vol. 122, № 35. – P. 8569–8570.

5. Nestler, O. A. Ruthenium porphyrin catalyst immobilized in a highly cross-linked polymer / O. A. Nestler, K. Severin // Org. Lett. – 2001. – Vol. 3, № 24. – P. 3907–3909.

6. Chou, Tse-Chuan. Epoxidation of oleic acid in the presence of benzaldehyde using cobalt(II) tetraphenylporphyrin as catalyst / Tse-Chuan Chou, Shan-Van Lee // Ind. Eng. Chem. Res. – 1997. – Vol. 36. – P. 1485–1490.

7. Марковский, Л. Н. Фосфорсодержащие макрогетероциклические соединения / Л. Н. Марковский, В. И. Кальченко // Журн. Всес. хим. об-ва им. Д. И. Менделеева. – 1985. – Т. 30, № 5. – С. 487–499.

8. Gunter, J. M. Porphyrin-crown ether macrotricyclic co-receptors for bipyridinium cations / J. M. Gunter, M. R. Johnston // J. Chem. Soc. Perkin Trans. 1. – 1994. – P. 995–1008.

9. Gunter, J. M. Porphyrin-based molecular tweezers as a receptor for bipyridinium guests / J. M. Gunter, M. R. Johnston // Tetrahedron Lett. – 1992. – Vol. 33, № 13. – P. 1771–1774.

10. Tsukube, H. Porphyrinatoerbium–crown ether conjugate for synergistic binding and chirality sensing of zwitterionic amino acids / H. Tsukube, M. Wada, S. Shinoda // Chem. Commun. – 1999. – P. 1007–1008.

11. D'Souza , F. Design and studies on supramolecular ferrocene–porphyrin–fullerene constructs for generating long-lived change separated states / F. D'Souza, R. Chitta, S. Gadde // J. Phys. Chem. B. -2006. – Vol. 110. – P. 25240–25250.

12. Hayvali, M. Synthesis and characterization of unsymmetrically tetrasubstituted porphyrin and their nickel(II) complexes with the crystal structure of 5,15-bis(4-aminophenyl)-10. 20-diphenylporphyrinatonickel(II) / M. Hayvali, H. Gündüz, N. Gündüz // J. Mol. Strut. – 2000. – Vol. 525. – P. 215–226.

13. Synthesis and spectroscopic investigation of azoporphyrins / X. G. Liu [et al.] // Chin. Chem. Lett. – 2005. – Vol. 16, № 9. – P. 1181–1184.

14. Collman, J. P. Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins / J. P. Collman [et al.] // J. Am. Chem. Soc. – 1975. – Vol. 97, № 6. – P. 1427–1439.

15. The use of ¹H NMR and UV-vis measurements for quantitative determination of *trans/cis* izomerization of a photo-response monomer and its copolymer / M. Momiruzzaman [et al.] // J. Appl. Polymer Sci. – 2006. – Vol. 100, N_{2} 2. – P. 1103–1112.

16. Мамардашвили, Н. Ж. Спектральные свойства порфиринов и их предшественников и производных / Н. Ж. Мамардашвили, О. А. Голубчиков // Успехи химии. – 2001. – Т. 70, № 7. – С. 656–686.

17. Порфирины: структура, свойства, синтез / К. А. Аскаров, Б. Д. Березин, Р. П. Евстигнеева и др. – М. : Наука, 1985. – 333 с.

18. The chloroacetamido group as a new linker for the synthesis of hemoprotein analogues / J. P. Collman [et al.] // J. Org. Chem. Comm. – 1997. – Vol. 62, № 8. – P. 2308–2309.