УДК 541.64+ 678.744.322.+ 678.045.2+678-13

СИНТЕЗ НОВЫХ АМФИФИЛЬНЫХ БЛОК-СОПОЛИМЕРОВ МЕТОДОМ АТКР

Ю.О. Кирилина, аспирант, *В.Ван Камп, ст. науч. сотр., И.В. Бакеева, доцент, *Ф.Е. Дюпре, профессор, В.П. Зубов, профессор кафедра Химии и технологии высокомолекулярных соединений им. С.С. Медведева МИТХТ им. М.В. Ломоносова

*Department of Organic Chemistry, Polymer Chemistry Research Group, Ghent University

етодом квазиживой радикальной полимеризации с переносом атома (Atom Transfer Radical Polymerization, ATRP) получены амфифильные блок-сополимеры полиизоборнилакрилата–полиакриловой кислоты. Изучена кинетика полимеризации. Полученные образцы полимеров охарактеризованы по молекулярной массе и молекулярно-массовому распределению (MMP).

Ключевые слова: ATRP метод, амфифильные сополимеры, полиизоборнилакрилат, полиакриловая кислота, блок-сополимеры, кинетика полимеризации.

Последние успехи в области синтеза макромолекул заданной структуры (квазиживая радикальная полимеризация (КЖРП), ионная полимеризация, использование макромеров и др.) позволяют исследовать влияние тонких различий в структуре макромолекул на свойства этих полимеров. Особенно перспективными (значимыми) ЭТИ различия должны быть в случае дифильных систем. В связи с этим мы применили метод квазиживой радикальной полимеризации с переносом атома – Atom Transfer Radical Polymerization (ATRP) – с металлическими комплексами, иммобилизованными на твердом носителе для получения гомополимеров и амфифильных блок-сополимеров с контролируемолекулярной мым составом, массой, полидисперсностью И цепями заданного строения.

В обсуждаемых блок-сополимерах полиизоборнилакрилата объемный блок (ПИБА) представлял гидрофобную часть макромолекул, а блок полиакриловой кислоты (ПАК) – гидрофильную. Выбор мономера изоборнилакрилата (ИБА) основывался на том, что в составе его молекулы есть объемный гидрофобный заместитель И способная полимеризоваться методом ATRP акрилатная группа. Кроме того, по сравнению полимерными цепями полистирола и С полиметилметакрилата, концевые группы которых низкофункциональны ввиду наблюдающихся в случае этих мономеров побочных реакций, на основе ИБА могут быть получены цепи с высокофункциональными группами (более 90% функциональности). В литературных источниках есть данные о синтезе методом ATRP низкомолекулярного ПИБА, степень полимеризации которого ниже 25, и о получении мультиблоковых ПИБА-содержащих сополимеров, используемых в дальнейшем в системах доставки лекарств [1].

литературе B описано получение полиакриловой и полиметакриловой кислот путем нитроксид-опосредованной КЖРП и с помощью метода обратимого переносаприсоединения-фрагментации (Reversible Addition Fragmentation Transfer) акриловой кислоты [2-4]. Для синтеза блок-сополимера оба этих полимеризационных подхода не Метод ATRP очень эффективны. не использовали для получения полиакриловой кислоты из-за побочных реакций мономера с металлокомплексом и кватернизацией азотных лигандов [5], хотя в работе [6] обсуждали синтез гомо- и сополимеров метакриловой кислоты в водной среде с использованием соли метакриловой натриевой кислоты. Альтернативным путем синтеза ПАК стало использование производных мономеров акрилового ряда, таких как бензилметакрилата и трет-бутилметакрилата [7, 8]. Но во всех случаях для получения поликислоты необходимы стадии депротекции и очистки, которые не всегда просты, поскольку стадия депротекции сопровождается побочными реакциями.

Авторами работы [9] было показано, что использование в качестве мономера 1-этоксиэтилметакрилата И 1-этоксиэтилакрилата позволяет, с одной стороны, осуществить КЖРП методом ATRP, а с другой стороны, минимизировать побочные реакции на сталии депротекции этоксиэтильных групп. Полученные полимеры полиэтоксиэтилакрилата (ПЭЭА), являющиеся прекурсорами для дальнейших синтезов полиметакриловой и полиакриловой кислот, имели определенную молекулярную массу и узкое молекулярно-

«Вестник МИТХТ», 2008, т. 3, № 4

массовое распределение (ММР).

настоящей работе синтез B блоксополимеров осуществляли в три стадии. Первая стадия синтеза блок-сополимеров состава ПИБА-ПАК заключалась в получении гомополимера ПИБА с концевой галоидной группой, который далее использовался в реакциях образования сополимера. Механизм полимеризации ATRP (рис. 1) основан на отщеплении атома галогена либо инициатора (R-X), либо спящей полимерной цепи (P_n-X) переходным металлом (М), находящимся в комплексе с лигандом (L) в его низшей степени окисления (Mtⁿ/L). Далее образуется радикал (R[•]) или алкильный активная $(P_{n}^{•}),$ полимерная цепь а комплекс переходного металла трансформируется до его более высокой степени окисления (X-M_tⁿ⁺¹/L). На стадии роста мономер присоединяется к растущей полимерной цепи до того момента, как из-за отрыва атома галогена X-M_tⁿ⁺¹/L (с образованием M_t^n/L) возникают спящие участки. Контроль молекулярной массы, молекулярно-массового распределения (ММР) функциональности вдоль всей И непи осуществляется в результате динамического равновесия между спящей и активной полимерной цепью путем обмена электронов между комплексом переходного металла и активными участками концов цепей. Благодаря динамическому равновесию, концентрация радикалов остается постоянной, а реакции бимолекулярного обрыва минимизированы.

В работах [10–14] сформулированы преимущества АТКР над другими способами КЖРП в целях создания сложных полимерных архитектур. Данный метод позволяет использовать широкий ряд инициаторов, которыми чаще всего являются галоиды алкилов, кроме того, очевидна коммерческая доступность всех необходимых реагентов (галоидов алкилов, лигандов и переходных металлов).

В работе были использованы инициаторы (In) метил-1-бромопропионат (МБП) и диметил-2,6-дибромогептандиоат (ДМДБГ) в комбинации с катализатором:

Сu(I)Br / ПМДЭТА (ПМДЭТА – N,N,N',N",N"пентаметилдиэтилентриамин). Среди разнообразия комплексов переходных металлов разных групп периодической таблицы (Ti, Mo, Re, Fe, Ru, Os, Rh, Co, Ni, Cu) наиболее эффективными катализаторами широкого мономерного ряда в разных средах являются комплексы меди [15]. Такие катализаторы, в числе других мультидентантных, используются в комбинации с азотосодержащими лигандами. Условия выполненных реакций и полученные результаты представлены в табл. 1.

«Вестник МИТХТ»,	2008, m	ı. 3, № 4
------------------	---------	-----------

In	[M] ₀ /[In] ₀ /[Cu] ₀ /[ligand], мольн. соотношение	Время, мин	Выход, %	М _{п, ехр} а г∕моль	$M_{\rm w}/M_{\rm n}$	Состав
	100 / 1 / 0.5 / 0.75	45	19	3600	1.33	ПИБА ₁₇
		60	29	5200	1.33	ПИБА ₂₅
_	100 / 1 / 1.5 / 1.5	250	93	14500	1.16	ПИБА 70
МБП⁵	200 / 1 / 0.5 / 0.5	45	32	4210	1.21	ПИБА 20
		120	33	6706	1.32	ПИБА 32
		390	14	6800	1.21	ПИБА 33
		390	22	9950	1.17	ПИБА ₄₇
ДМДБГ ^в	200 / 1 / 2 / 2	45	46	14345	1.22	ПИБА 69
		45	48	22500	1.26	ПИБА 108
		90	78	29500	1.25	ПИБА 144

Таблица 1. Условия и результаты синтезов гомополимеров ПИБА

^а Состав определен с помощью ГПХ

б Метил-2-бромопропионат

^в Диметил-2,6-дибромогептандиоат

Все реакции проведены в этилацетате при температуре 75 °С.

Все синтезы проводили в этилацетате, поскольку предварительные исследования показали, что в этом растворителе наблюдаются наиболее высокие скорость и значения выходов реакции. Влиять на молекулярную массу полимеров возможно с помощью увеличения соотношения [M]₀/[In]₀ (табл. 1) или повышением концентрации меди от 0.5 до 2 эквивалентов, что, кроме того, позволяет получить большую степень превращения мономера. Однако использование высокой концентрации меди весьма невыгодно, так как из-за значительных количеств CuBr и отсутствия CuBr₂ в начале может происходить образование реакции

мертвых полимерных цепей и потеря функциональности концевых групп. Избытка меди следует избегать также из-за трудностей с ее удалением. Было найдено, что достичь высоких скоростей полимеризации можно и при низкой концентрации меди (0.5 эквивалента по отношению к инициатору).

Контролируемый характер течения реакции полимеризации независимо от типа инициатора доказывает наблюдаемый линейный характер изменения средней молекулярной массы как функции от конверсии (график первого порядка), в то время как MMP сохраняется узким по ходу реакции (рис. 2 а и 2 б).

«Вестник МИТХТ», 2008, т. 3, № 4

Особого внимания заслуживают образцы ПИБА₆₉, ПИБА₁₀₈, ПИБА₁₄₄, которые синтезированы с помощью инициатора ДМДБГ. Этот бифункциональный инициатор интересен тем, что имеет две точки образования радикала. Следовательно, рост цепи при проведении в дальнейшем реакции сополимеризации возможен двух в направлениях (появляются растущих два конца цепи), что позволяет получать тройные блок-сополимеры состава ПАК-ПИБА-ПАК.

Основываясь на имеющемся опыте [9], некоторые из выше полученных гомополимеров ПИБА использовали как макроинициаторы для синтеза амфифильных ПИБА-ПАК-сополимеров. Критерием отбора макромеров для синтеза блок-сополимеров были данные гель-проникающей хроматографии (ГПХ). Унимодальность кривой ГПХ свидетельствовала о полной функционализированности концевых групп в цепях макромера. Подробнее данные ГПХ будут ниже. Используя обсуждены макроинициаторы различной молекулярной массы и разные условия реакции (температуру, время) для проведения полимеризации второго блока были получены ПИБА-ПАК-блок-сополимеры, имеющие различия в длинах, а также в соотношениях блоков ПИБА и ПАК. На рис. 3 приведена полная схема синтеза.

Рис. 3. Схема трехступенчатого синтеза блок-сополимера ПИБА-ПАК.

1-Этоксиэтилакрилат (ЭЭА) был мономером, участвующим во втором этапе выполненных синтезов методом ATRP, а после завершения полимеризации ЭЭА полученный

блок выступал в роли прекурсора для получения блока ПАК. В табл. 2 представлен список некоторых синтезированных блок-сополимеров разной архитектуры и условия синтезов.

	Таолица 2. 3	CHORI	ия и резу	льтаты си	1H1630B 11	INDA-III	АК- ОЛОК-Сополимеров.
macroIn	$[M]_0/[In]_0/[Cu]_0/[ligand],$	Τ,	Время,	Выход,	M _{n,exp} ^a	M_w/M_n	Состав
	мольн. соотношение	°C	МИН	%	г/моль		Состав
ПИБА ₃₂			180	21	11300	1.25	ПИБА ₃₂ -ПАК ₆₂
ПИЕЛ	200 / 1 / 3 / 4.5	60	270	9,5	11400	1.18	ПИБА ₄₇ -ПАК ₁₆
IIIIDA ₄₇			90	24	15000	1.22	ПИБА ₄₇ -ПАК ₇₀
ПИБА ₆₉	150 / 1 / 3 /4.5	70	210	82	54900	1.43	ПАК ₂₈₁ -ПИБА ₆₉ -ПАК ₂₈₁
an	TT	a a					

Таблица 2. Условия и результаты синтезов ПИБА-ПАК- блок-сополимеров.

Состав определен с помощью ¹Н-ЯМР

Во всех случаях были синтезированы ПИБА-ПАК-блок-сополимеры с контролируемой молекулярной массой и узким ММР. На рис. 4 а и 4 б, в качестве примера, представлены графики зависимостей молекулярной массы и коэффициента полидисперсности от конверсии для образцов двойного и тройного блок-сополимеров. Для всех проведенных синтезов получены аналогичные зависимости, имеющие линейный характер обсуждаемых параметров.

Данные ГПХ, приведенные на рис. 5а и 5б, свидетельствуют о том, что непрореагировавших гомополимеров ПИБА в образцах блок-сополимеров не было, поскольку все кривые ГПХ имели унимодальный вид (плечи на кривых ГПХ отсутствовали) и смещение в сторону больших значений молекулярной массы по сравнению с тем же значением для макромера ПИБА. Это означает, что были получены «чистые» сополимеры, а полимеризация ИБА в выбранных условиях проведения реакции прошла с минимальной потерей бромидных концевых групп.

Следующим этапом синтезов было превращение блоков ПЭЭА в ПАК. Для этой цели образцы сополимеров ПИБА-ПАК подвергли термолизу при 80 °C в течение 24 ч. Данные термогравиметрического анализа (ТГА) показали, что при повышении температуры происходит снижение массы образцов. На рис. 6 приведен пример кривых ТГА для образца ПИБА₄₇-ПЭЭА₇₀, свидетельствующий об уменьшении массы на 15% при росте температуры до 200 °C. Рассчитанная теоре-

Рис. 4 б. Зависимость роста средней молекулярной массы (M_n) и полидисперсности (MMP) от конверсии при полимеризации ПАК₂₈₁-ПИБА₆₉-ПАК₂₈₁...

Рис. 5 б. ГПХ-данные макроинициатора ПИБА₆₉ (пунктирная линия) и соответствующего блоксополимера ПАК₂₈₁-ПИБА₆₉-ПАК₂₈₁ (сплошная линия).

тически масса для образца ПИБА₄₇-ПЭЭА₇₀ (на основе молекулярного состава образца и масс ИБА (208.3 г/моль), ЭЭА (144.17 г/моль) и АК (72.11 г/моль)) после депротекции и превращения в сополимер ПИБА₄₇-ПАК₇₀ составляет 85%, что совпадает с данными ТГА. Можно заключить, что получаемые экспериментальные значения находятся в хорошем согласовании с теоретическими массами обсуждаемых блок-сополимеров.

Если проводить процесс термолиза при более высоких значениях температуры (150 °C), происходит то дополнительная потеря массы образцов из-за образования появляющегося ангидрида. в результате циклизации карбоксильных групп ПЭЭА (около 4.2 масс.% для образца ПИБА₄₇-ПЭЭА₇₀), и начала процесса деструкции полимера. Поэтому для тепловой обработки блок-сополимеров ПИБА-ПЭЭА была температура зафиксирована 80 °C, при которой не наблюдалось течения нежелательных побочных процессов, а было лишь полное превращение ПЭЭА в ПАК.

Рис. 6. ТГА-данные блок-сополимера ПИБА₄₇-ПАК₇₀ до депротекции (сплошная линия) и после депротекции (пунктирная линия).

Синтез подобных макромолекул с заданной структурой методом ATRP дает возможность выявить влияние различий в структуре макромолекул на гидрофильно-гидрофобный баланс в цепях сополимеров и свойства этих полимеров в растворах. Дифильные блок-сополимеры могут заинтересовать исследователей своими специфическими свойствами в целях их применения для стабилизации дисперсий различной природы, получения мицелл и так далее. Показано, что архитектура подобных полимерных стабилизаторов влияет на заряд, толщину и плотность полимерного слоя в поверхностных и граничных слоях и, таким образом, на механизм и эффективность стабилизации в водных дисперсиях [16, 17].

ЛИТЕРАТУРА:

1. Synthesis of poly(isobornyl acrylate) containing copolymers by atom transfer radical polymerization / B. Dervaux, W. Van Camp, L. Van Renterghem, F. E. Du Prez // J. Polym. Sci. Part A: Polym. Chem. – 2008. – Vol. 46. – P. 1649–1661.

2. Mori, H. New polymeric architectures with (meth)acrylic acid segments / H. Mori, A. H. E. Müller // Prog. Polym. Sci. – 2003. – Vol. 28. – P. 1403–1439.

3. First nitroxide-mediated controlled free-radical polymerization of acrylic acid / L. Couvreur, C. Lefay, J. Belleney, B. Charleux, O. Guerret, S. Magnet // Macromolecules. – 2003. – Vol. 36. – P. 8260–8267.

4. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process/ J. Chiefari, B. Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang // Macromolecules. – 1998. – Vol. 31. – P. 5559–5562.

5. Patten, T. E. Atom transfer radical polymerization and the synthesis of polymeric materials / T. E. Patten, K. Matyjaszewski // Adv. Mater. – 1998. – Vol. 10. – P. 901–915.

6. First example of the atom transfer radical polymerization of an acidic monomer: direct synthesis of methacrylic acid copolymers in aqueous media / E. J. Ashford, V. Naldi, R. O'Dell, N. C. Billingham, S. P. Armes // Chem. Commun. – 1999. – Vol. 114 – P. 1285–1286.

7. Davis, K. A. Preparation of block copolymers of polystyrene and poly(*t*-butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization / K. A. Davis, B. Charleux, K. Matyjaszewski // J. Polym. Sci. Part A: Polym. Chem. – 2000. – Vol. 38. – P. 2274–2283.

8. Atom transfer polymerization of methyl methacrylate mediated by alkylpyridylmethanimine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution / D. M. Haddleton, M. C. Crossman, B. H. Dana, D. J. Duncalf, A. M. Heming, D. Kukulj, A. Shooter. // Macromolecules. – 1999. – Vol. 32. – P. 2110–2119.

9. Van Camp, W. Atom transfer radical polymerization of 1-ethoxyethyl (meth) acrylate: facile route toward near-monodisperse poly((meth) acrylic acid) / W. Van Camp, F. E. Du Prez // Macromolecules. -2004. - Vol. 37. - P. 6673–6675.

10. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-*tert*-butylphenoxide) initiating system: possibility of living radical polymerization / M. Kato, M. Kamigaito, M. Savamoto, T. Higashimura // Macromolecules. – 1995. – Vol. 28. – P. 1721–1723.

11. Matyjaszewski, K. Atom transfer radical polymerization / K. Matyjaszewski, J. Xia // J. Chem. Rev. – 2001. – Vol. 101. – P. 2921–2990.

12. Haddleton, D. M. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper(I) complexes/ D. M. Haddleton, C. B. Jasieczek, M. J. Hannon, A.J. Shotter // Macromolecules. – 1997. – Vol. 30. – P. 2190–2193.

13. Controlled radical polymerization of methacrylic monomers in the presence of a bis(orthochelated) arylnickel(II) complex and different activated alkyl halides/ C. Granel, P. Dubois, R. Jerome, P. Teyssie // Macromolecules. – 1996. – Vol. 29. – P. 8576–8582.

14. Percec, V. "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl / V. Percec, B. Barboiu // Macromolecules. – 1995. – Vol. 28. – P. 7970–7972.

15. Braunecker, W. A. Controlled/living radical polymerization: features, developments, and perspectives / W. A. Braunecker, K. Matyjaszewski // Prog. Polym. Sci. – 2007. – Vol. 32. – P. 93–147.

16. Block copolymers of vinyl ethers as thermo-responsive colloidal stabilizers of organic pigments in aqueous media / N. Bulychev, I. Arutunov, B. Verdonck, E.J.Goetals, F.E. Du Prez // Macromol. Chem. Phys. -2004. - Vol. 205, No 18. - P. 2457–2463.

17. Application of thermo-responsive poly(methyl vinyl ether) containing copolymers in combination with ultrasonic treatment for pigment surface modification in pigment dispersions / N. Bulychev, O. Confortini, P. Kopold, K. Dirnberger, T. Schauer, F.E. Du Prez, V. Zubov, C.D. Eisenbach // Polymer. – 2007. – Vol. 48. – P. 2636–2643.