А.Н. Кочетов, Л.Ю. Аликберова, *К.А. Шестаков

*Химическая лаборатория испытательного лабораторного центра МГЦД

СИНТЕЗ И ИССЛЕДОВАНИЕ СОЛЕЙ 2-(ДИФЕНИЛАЦЕТИЛ)ИНДАНДИОНА-1,3 СО ЩЕЛОЧНЫМИ МЕТАЛЛАМИ

УДК 543.8:543.432

интезированы и исследованы соединения щелочных металлов с 2- (дифенилацетил) индандионом-1,3. Среди синтезированных соединений лишь производные Na и К обладают достаточной растворимостью для получения на их основе водорастворимых родентицидных композиций.

Натриевые и калиевые соли производных индандиона-1,3 часто служат промежуточными соединениями как при очистке и выделении продуктов из реакционных смесей, так и при разнообразных физико-химических исследованиях [1-11].

Чаще всего соединения щелочных металлов с производными индандиона-1,3 представляют собой кристаллические вещества, из которых наиболее растворимыми в воде является натриевые соли [12].Именно используются в качестве антиастматических противотуберкулезных [13, 14],[15]противосудорожных [16] средств, антикоагулянтов крови [17, 18]. Некоторые соли этого типа применяются в качестве водоустойчивых долговечных красителей для струйной печати [19].

Соли щелочных металлов с 2-ацилпроизводными индандиона-1,3 используются в качестве родентицидных средств с антикоагулянтным механизмом действия [20, 21]. По параметрам токсичности неорганические соединения родентицидов уступают исходным органическим соединениям [21, 22]. Необходимо отметить, что токсикологические характеристики для неорганических солей родентицидов не всегда совпадают с реальным содержанием яда в отравленной приманке [23, 24]. Однако использование менее токсичных водорастворимых препаративных форм позволяет изменить тактику применения дератизационных средств и использовать дополнительные вкусовые привлекатели.

Некоторые соли щелочных металлов с производными индандиона-1,3, а также способы их получения были ранее описаны в литературе [21, 23], однако систематические исследования 2-(дифенилацетил)индандионатов щелочных металлов до сих пор не проводились.

Экспериментальная часть

В ходе настоящей работы синтезированы соли щелочных металлов с 2-(дифенилацетил)индандионом-1,3, являющимся антикоагулянтом крови [1].

Соединения были получены ПО К следующей методике. 15 ΜЛ хлороформного раствора в конической 0,6-0,9 г колбе, содержащего (дифенилацетил)индандиона-1,3, добавлялся 1г гидроксида раствор, содержащий щелочного металла (в случае Cs карбоната) в 20 мл воды. Полученную смесь встряхивали в течение 2 минут. Выделившийся осадок отфильтровали от маточного раствора через стеклянный фильтр (пор 100) и промыли 3 раза по 5 мл водой, а затем трижды хлороформом (по 5 мл). Выход составляет 60-80 %.

Элементный анализ (С, Н) был проведен на CHNS-анализаторе Carlo Erba EA 1108 без предварительной пробоподготовки. Определение металла проводилось на атомно-эмиссионном спектрометре с индуктивно-связанной плазмой IRIS Advantage ("Thermo Jarrell

Ash", США) растворением навески в хлорной кислоте.

Результаты анализа, приведенные в табл. 1, показали наличие одной молекулы

кристаллизационной воды в соединениях лития, натрия и калия, в то время как производное рубидия кристаллизуется безводным.

Таблица 1. Результаты элементного анализа (M, C, H) соединений щелочных металлов с 2-(лифениланетил)инланлионом-1.3 M(C₂₃H₁₅O₃)

е z (дифенилацетил)индиндионом 1,5 м(с2311 ₃ с							
Соединение	$\text{Li}(\text{C}_{23}\text{H}_{15}\text{O}_3)\cdot\text{H}_2\text{O}$			$Na(C_{23}H_{15}O_3) \cdot H_2O$			
Соединение	Li	С	Н	Na	С	Н	
Содержание, масс. % (вычислено)	1,9	75,7	4,7	6,1	72,6	4,5	
Содержание, масс. % (найдено)	1,7	73,3	3,5	4,1	71,8	3,5	
Соединение	$K(C_{23}H_{15}O_3) \cdot H_2O$			$Rb(C_{23}H_{15}O_3)$			
Соединение	K	С	Н	Rb	С	Н	
Содержание, масс. % (вычислено)	9,8	69,6	4,3	20,1	65,0	3,6	
Содержание, масс. % (найдено)	7,3	70,5	3,6	21,2	64,3	2,4	

ИК-спектроскопическое исследование соединений щелочных металлов с 2-(дифенилацетил)индандионом-1,3 с использованием ИК-Фурье спектрометра Bruker EQUINOX 55 в виде таблеток КВг проведено в диапазоне от 4000 до 400 см⁻¹ при комнатной температуре.

В наиболее характеристичной для валентных колебаний ν (C-O) карбонильных групп области ИК спектров соединений (1710-1270 см $^{-1}$) наблюдаются заметные

отличия спектров исходного (дифенилацетил)индандиона-1,3 (табл. 2). В области валентных колебаний v(О-Н) в ИК спектрах наблюдаются широкие полосы в случае производных лития, натрия и калия. Это может быть связано с образованием сольватов. В пользу этого предположения говорят литературные данные натриевая TOM, что соль (изовалерил)индандиона-1,3 кристаллизуется не менее чем с одной молекулой воды [24].

Таблица 2. Частоты полос поглощения в ИК-спектрах 2-(дифенилацетил)индандиона- 1,3~(HL) и его солей с щелочными металлами (ML) (см⁻¹)

HL	LiL	NaL	KL	RbL	CsL
1710	1679	1667	1682	1682	1679 1671
1648 1626	1640 1618	1619	1623	1622	1624
1590	1579	1587	1582	1577	1578
-	1538	1543 1528	1545	1554	1546
1496	1492	1494	1495	1492	1491
1466	1453	1449	1449	1449	1449
1450	1436	1427	1423	1430	1418
1391 1350 1328	1369 1348	1365 1342	1365 1341	1366 1340	1364 1340
1298 1287	1294	1292	1292	1291	1290

Низкая растворимость воде синтезированных соединений (менее 0.02%) не позволяет исследовать водные растворы исследуемых солей Li, Rb, Cs на наличие родентицидных свойств. Применение данных соединений возможно лишь в составе брикетов, однако В ЭТОМ случае, видимому, очевидных преимуществ по сравнению с используемым в качестве родентицида исходного лиганда не будет.

Соединения натрия и калия с 2- (дифенилацегил) индандионом-1,3 обладают большей растворимостью и могут быть использованы для получения водорастворимых композиций, обладающих родентицидным действием.

ЛИТЕРАТУРА:

- 1. Витол В. Н., Ванаг Г. Я. //Изв. АН ЛатвССР. 1955. № 9. С. 111.
- 2. Дрегерис Я.Я., Германе С.К., Ванаг Г.Я. //Изв. АН Латв. ССР. Сер. хим. 1965. № 2. С. 209.
- 3. Линаберг Я.Я., Вейс А.Р. //Изв. АН Латв. ССР. Сер. хим. 1965. № 4. С. 424.
- 4. Карлсон Г.Л., Гудриенце Э.Ю., Линдберг Я.Я. //Изв. АН Латв. ССР. Сер. хим. 1965. № 5. С. 537.
- 5. Арен Б.Э., Ванаг Г.Я. //Изв. АН Латв. ССР. Сер. хим. 1965. № 5. С. 621.
- 6. Думпи Т.Т., Родовиц И.Р., Ванаг Г.Я. //Изв. АН Латв. ССР. Сер. хим. 1965. № 6. С. 733.
- 7. Крауя А.Я., Василевская В.Э., Ванаг Г.Я. //Изв. АН Латв. ССР. Сер. хим. 1961. № 2. С. 193.
- 8. Апсит А.А., Жданова Г.И., Ошкая В.П. //Изв. АН Латв. ССР. Сер. хим. 1972. № 5. С. 526.
- 9. Апсит А.А., Жданова Г.И., Ошкая В.П. //Изв. АН Латв. ССР. Сер. хим. 1972. № 5. С. 529.
- 10. Грен Э.Я., Гринвалде А.К., Страдынь Я.П. //Ж. Орг. химии. 1971. Т. 7. Вып. 3. C. 506.
- 11. Апсит А.А., Бычкова Н.Н., <u>Ошкая В.П.</u> //Изв. АН Латв. ССР. Сер. хим. 1974. № 5. С. 545.
- 12. Гейта Л.С., Гринвалде А.К., Озол Ю.А., Арен А.К. //Изв. АН Латв. ССР. Сер. хим. 1973. № 1. С. 72.
- 13. Spicer B.A., Ross J.W., Smith H. //Clin. Exp. Immunol. 1975. V. 21. № 3. P. 419.
- 14. Sharpe T.J., Ross J.W., Spicer B.A. //Agents Actions. 1978. V. 8. № 3. P. 199.
- 15. Медне К.К., Гейта Л.С., Ванаг Г.Я. //Изв. АН ЛатвССР. 1967. № 10. С. 133.
- 16. Vanags G., Ozols J., Arens A., Germane S. U.S. Pat. 3,980,707 (Cl. 260-577; C07C97/10), 14 Sep. 1976, Appl. 697,278, 27 Dec 1967, 5 p.
- 17. Коптелова М.Н., Шафро Е.А., Ратенберга Н.О. //Изв. АН Латв. ССР. Сер. хим. 1969. № 1. С. 92.
- 18. Аренс А., Нейланд О., Ванаг Г.Я. //ДАН СССР. 1960. Т. 132. С. 115.
- 19. Sakaeda T., Suga Y., Shirota K. JP 62,190,270 [87,190,270] (Cl. C09D11/00), 20 Aug 1987, Appl. 86/30,897, 17 Feb. 1986; 6 p.
- 20. Konecky M.S., Miltin N. //J. Econ. Entomol. 1955. V. 48. P. 219.
- 21. Saunders J.P., Heisey S.R., Goldstone A.D., Bay E.C. / J. Agr. Food Chem. 1955. V. 3. P. 762.
- 22. Болоховец М.Ф. //Труды Всес. Научно-Исслед. Инст. Вет. Санит. 1977. Вып. 57. С. 124.
- 23. Liu Z., Mo G. //Chem. Abstr. 1982. 97: 34684 u.
- 24. Liao C. //Chem. Abstr. 1982. 97: 194573 k.