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A series of operating (Laplace) non-standard images, the originals of which are absent in well-known
reference books on operational calculus, are considered. By reducing one of the basic images to the
Riemann-Mellin contour integral for the modified Bessel functions and analyzing the corresponding
inversion formula using the approaches of the complex variable function theory, an analytical form of
the original original is found, which is abrupt in nature with a break point. It is shown that analytical
solutions of the corresponding mathematical models using the found originals have a wave character,
which is expressed by the presence of the Heaviside step function in the solutions. The latter
means that at any time there is a region of physical disturbance to the point of discontinuity and an
unperturbed area after the point of discontinuity. The images studied are included in the operational
solutions of mathematical models in many areas of applied mathematics. physics, thermomechanics,
thermal physics, in particular in the theory of thermal shock of viscoelastic bodies, in the study of the
thermal reaction of solids based on the classical Maxwell-Cattaneo-Lykov-Vernott phenomenology,
taking into account the final rate of heat propagation. These models are needed to study the thermal
reaction of relatively new consolidated structurally sensitive polymeric materials in structures exposed
to high-intensity external influences. The analytical relations obtained for the originals and the original
improper integrals resulting from them, containing combinations of Bessel functions, can be used in
the general methodology of constructing and applying various mathematical models in a wide range
of external influences on materials in many fields of science and technology.

Keywords: originals of operational images, hyperbolic models of unsteady heat conduction,
thermal shock.
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PaccemompeHra cepust onepauuoHHblx (no Aannacy) HecmaHOapmHbix U300parkeHUll, OpUzUHATbL
KOMOpbILX OMCYMCmaytom 8 U38EeCMHbIX CNPABOUHUKAX NO ONEPAUUOHHOMY ucuucieHuro. ITymem
cgedeHust 00H020 U3 6a308blLX U30OpaIEeHUTL K KOHMYpHOMY uHmezpany Pumana-Mennuna onst mo-
ougpuyuposaHHblx pyHrkyuil Beccenst u ananuza coomeemcmeyrowieii. popmyavl obpawyeHust ¢
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UCNO/TL308AHUEM N00X0008 Meopull (hYHKUUT KOMNIAEKCHO20 NEePeMeHH020 YCmAaHO8NeH AHAU-
muuecKkuil U0 UCKOMO20 OPULUHANA, UMEIULE20 CKAUKO0OpasHblil xapaKkmep ¢ moukol pa3pslea.
Iokasaro, umo aHaruMUUecKue peuweHuUst COOme8emcmayruLUX MAMemMamuyueckux mooenell ¢ uc-
NobL308AHUEM HATUOEHHbIX OPUZUHAIO8 UMEIOm 80JIHO8OU XapaKmep, Uumo 8blparkaemcst Ha/UUU-
em 8 peuwleHusix cmyneHuamoti pyrrkyuu Xesucatioa. IlocnedHee osHauaem, umo 8 /060l MoOMeHm
8peMmeHU cyuiecmayem ob1acmos pusuUUecKoz0 803MYUeHUsL 00 MOUKU Paspblea U He803MYULEHHASL
obiacme nocie mouku paspelea. MsyueHHble Uu300parKeHust 8x00sim 8 ONepayUoHHble peuleHust Ma-
memamuueckux mooeseti 80 MHo2UX 06ACMSX NPUIIAOHOU MAMEMAMUKU, (PUIUKU, MePMOMEXA-
HUKU, MeniogusuKu, 8 UACMHOCMU 8 Meopul Menio8o2o Yoapa 8s3Ko0ynpyaux mes, npu usyueHuu
mensiogoll peaKyuu meepoblx mes HA OCHo8e Kaaccuueckol gpeHomeronoeuu Marxcsenna-Kamma-
Heo-/\blxoga-BepHomma ¢ yuemom KOHeuHOU CKOpOoCmu pacnpocCmpaHeHusl meniomel. YKasaHHble
Modenu Heobxo0umbl 0151 USYUEHUSL MEPMUUECKOU PeaUU CPASHUMETbHO HO8bLX KOHCOUOUPOBAH-
HbIX CMPYKMYPHO-UYECMBUMENLHBLX NOJUMEPHBLX MAMEPUATIO08 8 KOHCMPYKUUSX, NOOBEPACHHBLX
8blCOKOUHMEHCUBHbIM BHEeWHUM 8030elicmausim. TlonyueHHble 011 OPUSUHANI08 AHAIUMUUECKUEe
COOMHOWEHUSL U 8blMeKarowue U3 HUX OPULUHAIbHbLE HecobCcmaeHHble UHMezpasbl, codeprkaujue
rombuHayuu pyHKyuil Beccenst, moeym Oblmb UCNOTb308AHbL 8 00ULell Memodos10eUU NOCMPOEHUSL U
NpUMeHeHUsl PasHOOBPA3HBIX MAMEMAMUUECKUX MO0enell 8 WUPOKOM OUANA30He 8HEULHUX 8030eli-
cmeull Ha Mamepuaibl 80 MHO2UX 00IACMSX HAYKU U MEXHUKUL.

Knroueesle cnoea: opuzuHAIbL ONEPAyUOHHBLX U306parkeHUll, sunepbosuueckue Mooesiu HeCmayuo-
HAapHOU MenionpogooHOCMU, Meniogoll yoap.

Introduction

Modern structural materials, which are a
combination of micro- or nanostructured elements,
are often called structurally sensitive materials. The
creation of such materials based on nanotechnology
is an important direction in the development of
modern materials science. Such materials have unique
physico-mechanical properties that allow them to be
used effectively in structures subject to high-intensity
external influences [1, 2]. An important step in the
creation and use of these kinds of materials is the
construction of appropriate mathematical models to
describe their behavior in a wide range of changes
in external loads. The general methodology for
constructing and studying such models is still far
from complete and requires further development.
This applies primarily to the mathematical models
of a number of physical processes while taking into
account spatio-temporal nonlocality.

Classical phenomenological models of transport
processes and other phenomena, such as Fourier
heat, Nernst mass, Ohm electricity, Newton and
Hook voltages, are based on the principle of local
thermodynamic equilibrium and the continuous
medium hypothesis. The differential equations
derived from them for the corresponding physical
quantities are local, that is, they do not take into
account local non-equilibrium processes; in the
process of derivation, an infinite propagation velocity
of disturbances is incorporated into them. Moreover,
the functions describing these processes are smooth
functions of coordinates and time. However, the
propagation velocity of the potentials of any physical

fields cannot take infinite values. In a real body, the
process of their change occurs with a certain delay
in time according to the relaxation properties of the
material, which are taken into account by relaxation
coefficients. Such processes exist in reality. They
have so-called front surfaces, passing through which
makes the temperature function and its derivatives
acquire a discontinuity [3, 4]. These functions are
described by hyperbolic differential operators. They
include high-intensity non-stationary processes, the
flow time of which is comparable to the relaxation
time. Examples include heating materials with
short laser pulses (duration varies from nano- to
femtoseconds); heating processes with friction at
a high speed; during a thermal shock; local heating
during dynamic propagation of a crack in a transonic
mode, etc.

Taking into account the local non-equilibrium
embedded in the Maxwell-Cattaneo-Lykov-Vernotte
relation for the heat flux (in the one-dimensional
case)

(1)

oT(x,t) _ 0q(x,t)
) =—1 -7
q(x,1) ™ Y

together with the energy equation ¢p0T / Ot = —0q / Ox
lead to the heat hyperbolic type equation [5]

or(x,n) _ OT(xp) _ FT(x1)

()
ot ox* "o
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and the corresponding boundary value problems of a
generalized type [6]. In this case, 7, signifies the thermal
relaxation time (a measure of the inertia of the heat flux)
associated with the rate of heat propagation v, by the

relation 7, =a/ V? (a — thermal diffusivity). When
v, — oo, the magnitude z. — 0 and relations (1)—(2)
respectively lead to the classical phenomenological
law of Fourier heat transfer and the parabolic-type
heat equation, which underlies an almost unlimited
number of studies on non-stationary heat transfer. The
generalized transport problems for equation (2) differ
significantly from the classical ones, with it being more
difficult to find their analytical solutions. The specificity
of such problems lies in the relative simplicity of the
original mathematical models and the difficulties of
solving them in an analytically closed form. This results
in very little success in finding their exact analytical
solutions. The main method for solving boundary-value
problems of a generalized type for partially bounded
domains is the operational one, which leads to complex
functional constructions of the Karslow-Jdger type
[7] in analytic solutions in the Laplace image space

T(x,p)= J.exp(—pt)T(x,t)dt . The originals of the
0

aforementioned Karslow-Jager type constructions do not
appear in well-known reference books on operational
calculus. Serious computational difficulties arise along
this path. The aim of this publication is to consider a
series of non-standard images and their originals. In
addition to the generalized problems of non-stationary
transfer (heat and mass), such images also arise in the
description of electric transmission lines, in the study of
transient modes of electrical circuits (the propagation of
electrical disturbances along the transmission line); in
the thermal shock theory of viscoelastic bodies, etc. Let
us dwell on the generalized problem for equation (2) in
the region x > 0, t > 0 under the initial condition

T(x,1)|,o=T,, x>0 3)

and boundary conditions of either the first kind
(temperature heating or cooling)

W=T,t>0, @)

or the second kind (thermal heating or cooling)

Y

rO

t—t 1
o0 EXP(———)dT = ——¢,,t > 0,(5)
T, A

or of the third kind (heating or cooling by the environment)

t T _
—J.a (x t) N OGXPK——t Tjdz‘:
r 0 ax 7’—r
(6)
=h[T(x,t)|,,-T.],t>0

as well as the constraint condition (in all three
cases)

|7 (x,1)| < o0,x20,¢>0. (7)

It should be noted that questions of the correct
formulation of the boundary conditions for the hyperbolic
type equation (2) were considered by the author in [7].

Let consider the next theory: the originals for non-
standard images.

Inversion theorems for images

Consider a series of images of the form

F(prexp| —x\(p+2a)(p+2B) |

or

-

F(pyexp| —xu(p) |

w(p)=(p+2a)(p+2p): (8)

where 7( p) — are various combinations of rational and
irrational functions of the argument p.
Initially we examine Riemann-Mellin type integral

1 }/+lOO

Y(x,0) =

exp| pt—xu(p) |dp. (9)
27”7,00 w#(p) [ ]

The use of the representation of the Bessel function
of an imaginary argument / (z) in the form of the integral

(8]

2 n 1 }"FlOO l
( j I (z)=— T exp(u +—)du (10)
zZ ioo

and give (9) to a form similar to equation (10). For this,
suppose [7]:

(p+2a)1/2+(p+2ﬂ)1/2 :§1/2
(p+2a)” =(p+2p)" =205, (11)
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the equation leads to

p=i(§+4§ —4p)J(pr2a)(p+2p) =

_1 _4‘72 12
P! (12)
dé dp

=5 . 13
¢ Jpi2a)p2B) (9

Here, p = a +f, 0 = a—f. Following this, the integral
(9) is transformed by replacing the variable (13). In this
case, the straight line (¥ —io0, ¥ +i00) in the plane p is
transformed into a line in the plane & This line is not
straight, but by Cauchy’s theorem it can be deformed
into a line, which is described as (;/' — o0, 7' +700).
Now, the integral (9) takes the form of

Y(x,0) =
_Lyvrd_fex - z+l§(t—x)+"—2(t+x) (14)
2mi 2, & PP 4 4
If t> x, then, assuming in (14) (£ /4)(t—x)=u

and n = 0 from equation (10) we can derive:

Y, (x,t) = exp(-pt)],(cNt* —x*),t > x. (15)

Finally, it is possible to derive

u(p)

If ¢ < x, consider the integral (14), taken along a
closed contour shown in Figure, which consists of a

part of the contour (y —ioo, y +ioo) and the arc of the
circle with the radius R and a center at the start of the
coordinates. The integrand function in (14) is regular
inside the contour and on the boundary, and it does
not contain any poles inside the contour. Afterwards,
using the Cauchy theorem, the integral along this
contour is equal to zero. It can be demonstrated that
for R — oo the integral along the arc of the circle turns
into zero. Thus, this leads to the following result

Y (x,5)=0for £<x. (16)

A

The contour for calculating the integral (14).

exp [—x;( p)] ——exp(—pt)I,(oNE — x> )n(t - x), (17)

where #(f) is the Heaviside function. Further applying the convolution theorem, one can find:

-

=1 jf(t—r) exp(—p7)l,(oN7* —x*)dr,t > X,

0, r<x,

= [jf(t—r) exp(—pr),(oN7* —x*)dr |3t —x).

;(lp) exp| —xu(p) | f(p)—— [ f(t=r)exp(-pr) I (o> X" (7 ~x)dT =

(18)
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Differentiating (18) with respect to x leads to:

exp[ x,u(p)}f(p)(— f(t—x)exp(— px)+0'x_[f(t 7)exp(— pz')[(jri )dr,t>x.

(19)
-0, t<x.
Assuming in (19) that 7( p) =1l then f(¢)=5(t)is the Dirac function. Thus, from (19) we acquire:
— . I (ot
exp| —x2(p) |1 exp(—p1)8(t —x)+ o exp(—pn) L O )
X
(20)
- 0, r<x.
- 1
Suppose now that in (19) f(p)=—, f(t) =1. We can derive the following:
p

1 — . f I (oN7>—x%)

—exp| —xu(p) |[«—1 exp(—px) + ox|exp(—pr) ——x=—dr,1 > x,

—— forp-pr 1N
€2y

0, t<x.
Assuming 7(}7) = l,f(t) =1, in (18) then
p
exp[ x;(p)] —— J.exp(—pz')l0 (oNT° —x*)dr,t > x,
pu(p) x

(22)
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Based on that, we can find the original of the following image:

p+2p
p+2a

1
28—
" ﬁ{ﬂ(l?)

p+2p
w(p)

exp| ~xu(p) | /(p) ="=""exp| ~xuu(p) | /(p) = H; (lp) exp(—xﬁ(p))}}?(p) +

exp[—xﬁ(p)]}?(p) [ 105 exp-pr (V7 =) e -0z +
0 T
+jf(t —1)exp(—pr)l,(oNT> —x*)S(r —x)dr + 2ﬁjf(t —7)exp(—pr)l (oNT’ —x*)dr =

= f(t=x)exp(-px) - (25 —p)ff (t=7)exp(—p)l,(oNT* —x")d7 +

_0111(0'\/12 —x%)
\/1'2 )

+jf(t —7)exp(—p7) ol (o'~ x’) —ol,(oNt? =X )]dr.

+[ f(t-7)exp(-pr) }lr = [ (t—x)exp(—px)+

\/Tz_xz

Thus:

p+2p
p+2a

+j‘f(f—’[)exp(—pf){aﬂl(o- rox) ~ol,(oNT’ =X )},t > X.

exp| =xp(p) | f(p)«—— f(t=x)exp(~px) +

(23)

\/Tz—x2

Assuming in (23) 7(1)) = i,f(t) =1, we obtain
P

1 /Piiﬁ exp[ x,U(P)L—exp( px)+_[exp( pr)[aﬂl(o_“Tz_xz)—(flo(d\/rz—xz) dr,t>x. (24)
p

p \/1'2—x2

The discovered originals lead to a number of interesting relations for improper integrals containing Bessel
functions. Using the inversion theorem for the Laplace transformation, we can transform (17) into:

;(lp) exp[_x;(pﬂ - J.eXp(—pt —pH)l (o~ £ —x’ (e —x)dt = J.exp [—t(p + ,0)]10 (Uw/[z —x? Yt . (25)

Differentiating both sides of equation (25) with respect to x:

exp[—x;(p)] =exp [—(p + p)x] + G)CJ. exp [—t(p + p)]%dt. (26)
-X

X

Tonkie Khimicheskie Tekhnologii = Fine Chemical Technologies. 2019;14(4):77-86
82



Eduard M. Kartashov

This operation is justified by the uniform convergence of the integral (26). In addition, both sides of the equation
(26) are continuous functions with respect to p, therefore, assuming p — 0 we have:

Iexp( pt) 1(31‘7 )dt—(l/ (O'x))[exp( Zx\/_ ) —exp(— px)} (27)

X

Assuming (25) p — 0, we obtain:

jexp( o), (oNt —x*)dt = \/_ﬁexp( 2x\/7) (28)

The next class of images, which is of interest for the thermal shock theory of viscoelastic bodies [2], take
the form of:

+(B +
O(x, p) = eXp xp ARV )] , (29)
p+p
where S >0, 3, > 0. To clarify the possible form of the original (29), we first study the integral
L ! exp{ 14 x\/(p+2a)(p+2ﬂ)}tpt}dp ing th thodol
- - , using the methodology
271 S (p+20)(p +2f) p+2p
expressed in (11)—(16) for these purposes. We establish that the original Q(x, ¢) has the following form:
Q(xat) = F(xa t)ﬂ(t —X), (30)
1 71 +(B +
where F(x,t)=— I —exp| —xp M+pt dp. (1)
2 l y—ioo p +ﬂ2

The contour integral in (31) has two branch points and is calculated in accordance with the well-known rules of
operational calculus [1]. We find that the final result is

lexp[—xp p+(B +:82)j|< *
P p+h5

1 5 exp[—(y+ﬂzy]sin{x(ywzx /?}dy}n@—x}

* |4
FT—+—;£y+

(32)
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As follows from (32), the original Q(x, ) allows for a jump when passing through the value ¢ = x. The magnitude
of this jump is

|A|=1im, ., F(x,0)n(t —x) = lim
1 ﬂl

:1_;.“ lﬂ exp[—(y+ﬂ2)x]sin{x(y+ﬂ2) %}dy.

0 VTP,

F(x,x+2)n(z)=F(x,x)=

z—0

(33)

When calculating the same value |A| , using the operational approach, we can see that the ratio for the function (30)
is as follows:

lim, [ pO(x, p)exp( px)} = F(x,x). (34)

Then, in order to prove (34), we begin with the following:

é(x, p)= Iexp(—pt)Q(x, Hydt = J.exp(—pt)F(x, t)dt = exp(—px)J- exp(—pz)F(x,x+z)dz,

from which we acquire é(x, p)exp(px) = Jexp(— pz)F(x,x+z)dz.

0

Passing to the variable # = pz in the integral, we have
—_— s u
PO(x, p)exp(px) = [ exp(—)F (o x-+—)d
0

The transition to the limit with respect to (29) and (34) while p — oo leads to the following relation

A|=1im [ pO(x, p)exp( px)] = exp[~(Bx/2)]. (35)

Finally, an interesting result is derived from the above calculations and (33):

ﬂl —
1—l.[ 1 exp[—(y+ﬂ2)X]SiH[X(y+ﬂ2),/%}dy=6Xp[—(ﬂ1x/2)]. (36)

Ty y+p

This requires a special explanation (which is supposed to be done in a subsequent publication). From (31),

t
following the rule of differentiating the original J. f(@)dr——(1/ p) f(p) we find another original for the
0

image, which also poses an interest to operational calculus:

7 A
exp{—xp r+h+B) |, . l—lj‘ ! exp[—(y+ﬂ2)t]sin{x(y+ﬂ2) /M}dy S(t—x)+
p+p, | Ty v+ P, Y

y - = (37)
{;IGXP[—(wﬁz)t]sin x(y+ﬁz),/‘7}dy}n(t—x)-

A
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Finally, we express the operational solutions to the boundary value problems (2)—(7) in generalized variables:

ar, c
T(x,t)-T,
goJar, I A

W, r)= (for the case of (5)).

We discover:

W (& p)=T(prexp| ~&p(p+1) |

- 1 - +1 —
where f(p)=— inthecaseof(4), f(p)= pT in the case of (5), and f(p) =
p p

All originals can be found using the above ratios. It
was shown in [3] that the originals of images (38) allow
for a transition to new functional constructions that are
equivalent to those given above and are very convenient
for conducting numerical experiments. This is one of the
features of the solutions of hyperbolic transport models
for partially bounded domains.

Conclusions

The work has presented the originals of non-
standard images, which are part of the operational
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