СИНТЕЗ И ПЕРЕРАБОТКА ПОЛИМЕРОВ И КОМПОЗИТОВ НА ИХ ОСНОВЕ

SYNTHESIS AND PROCESSING OF POLYMERS AND POLYMERIC COMPOSITES

https://doi.org/10.32362/2410-6593-2019-14-4-39-44 УДК 691.175.2

Структура, составы и получение литьевых композиционных материалов на основе стеклонаполненного полисульфона

А.Б. Баранов¹, Т.И. Андреева², И.Д. Симонов-Емельянов¹, О.Е. Пексимов²

¹МИРЭА – Российский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова), Москва 119571, Россия ²АО «Институт пластмасс им. Г.С. Петрова», Москва 111024, Россия [®]Автор для переписки, e-mail: qsefdesx@gmail.com

Рассчитаны составы и спроектированы структуры для системы полисульфон (ПСФ) + короткие стеклянные волокна. Представлена классификация дисперсно-наполненных полимерных композиционных материалов (ДНПКМ) на основе ПСФ-190 по структурному принципу, с учетом обобщенных параметров структуры и установлена оптимальная область содержания стеклянного волокна (13.5–18.5% об.). Описана технология получения ДНПКМ на основе ПСФ и короткого стеклянного волокна на двухшнековом экструдере фирмы Labtech Engineering Company LTD марки Scientific FIC 20-40 и определены оптимальные параметры смешения для создания композиций с длиной стекловолокна более $l_{\rm кp}$. Рассчитана критическая длина ($l_{\rm kp}$) и построены кривые распределения волокна по размерам в полимерных композиционных материалах на основе полисульфона. Впервые приведены данные по оптимальным параметрам структуры ДНПКМ на основе ПСФ и коротких стеклянных волокон, которые соответствуют средненаполненным дисперсным системам.

Ключевые слова: полисульфон, композиционные материалы, критическая длина волокна, короткие стеклянные волокна, смешение.

The structure, composition and preparation of injection-molded composite materials based on glass-filled polysulfone

Artyom B. Baranov¹, Tatyana I. Andreeva², Igor D. Simonov-Emel'yanov¹, Oleg E. Peksimov²

¹MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies), Moscow 119571, Russia

²JSC "G.S. Petrov Institute of Plastics", Moscow 111024, Russia

[@]Corresponding author, e-mail: qsefdesx@gmail.com

In the course of this study, compositions and designed structures for the polysulfone (PSF) and short glass fibers systems were calculated. Additionally, disperse-filled polymer composite materials (DFPCM) based on PSF-190 were classified in accordance with their respective structures, and the optimal amount of glass fiber (13.5–18.5 vol %) was determined. This article describes the production of DFPCM using PSF and a short glass fiber with a twin-screw extruder (Labtech Engineering Company LTD, model Scientific FIC 20-40). Furthermore, optimal mixing parameters for the creation of composites wherein the glass fiber length exceeds the critical length (l_{cr}) were established. The critical length was calculated, and the curves for fiber size distribution of polysulfone composites were depicted, and a difference in fiber concentration between the dispenser and the extrusion head (up to ~10–15%) was found when the fiber content was at 18–25 vol %. For the first time, optimal parameters (which pertain to medium-filled dispersions) for the structure of DFPCM based on PSF and short glass fiber are able to be demonstrated.

Keywords: polysulfone, composite materials, critical fiber length, short glass fibers.

Введение

Для улучшения комплекса физико-механических характеристик в теплостойкие полимеры конструкционного назначения класса полисульфонов (ПСФ) вводят волокнистые наполнители разной природы, что позволяет существенно расширить их марочный ассортимент и области применения.

Проектирование структур и составов дисперсно-наполненных полимерных композиционных материалов (ДНПКМ) должно осуществляется с учетом классификации системы по структурному принципу [1].

В работе приводятся данные по созданию в процессе экструзии полимерного композиционного материала на основе полисульфона с разным содержанием коротких стеклянных волокон.

Выбор содержания стекловолокна осуществляли согласно классификации дисперсных систем по структурному принципу: разбавленные (PC), низконаполненные (HHC), средненаполненные (CHC) и высоконаполненные (BHC) с учетом обобщенных параметров структуры для получения литьевых ДНПКМ.

В работе [2] установлено, что в области разбавленных и низконаполненных систем наблюдаются незначительные изменения комплекса физико-механических характеристик, максимальные показатели достигаются при образовании средненаполненных систем до предела текучести расплава (СНС-1) и с пределом текучести (СНС-2).

Экспериментальная часть

В качестве объектов исследования были выбраны: отечественный ПСФ марки ПСФ-190 (АО «Институт пластмасс») с показателем текучести расплава (ПТР) = 10 г/10 мин (340 °C и 2.16 кгс) и температурным интервалом переработки 295–305 °C [3], а также стеклоровинг фирмы "Ovens corning" марки EC17-1200¹ с диаметром элементарной нити 13 мкм и линейной плотностью 2180 текс. [4].

¹Каталог Owens Corving, OCV Reinforcements [Электронный ресурс]. URL: http://www.ocvreinforcements.com/pdf/products/SingleEndRovings_SE1200_ww_06_2008_Rev0.pdf

Полисульфон марки ПСФ-190 сушили при температуре \sim 145 $^{\circ}$ С в течение 4 ч под вакуумом до остаточной влажности не более 0.02%.

Смешение исходных компонентов и регулирование содержания волокна в ПСФ осуществляли в процессе экструзии путем изменения скорости подачи ПСФ с помощью гравиметрического дозатора при постоянной скорости подачи стеклоровинга с бобин.

Смешение компонентов проводили на двухшнековом экструдере фирмы Labtech Engineering Company LTD марки Scientific FIC 20-40. Схема процесса получения стеклонаполненного ПСФ представлена на рис. 1.

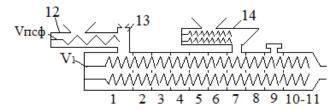


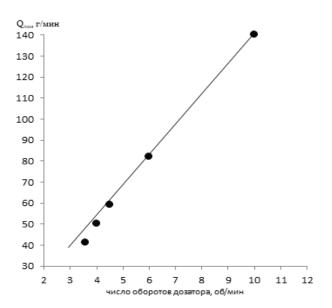
Рис. 1. Схема процесса получения стеклонаполненного ПСФ (обозначения см. далее в тексте).

Лабораторный экструдер (рис. 1) с диаметром шнеков $D_{_{\rm III}}=20$ мм и $L/D_{_{\rm III}}=40$ имеет 10 независимо обогреваемых зон с температурой по зонам: 1 зона -260 °C, 2-9 зоны -310 °C, 10-11 зоны -295 °C. Экструдер снабжен зоной дегазации (зона 9).

Крутящий момент в процессе получения стеклонаполненного ПСФ составлял $\sim\!35\!-\!40~{\rm H}\cdot{\rm M}$. Скорость вращения шнеков при переработке была постоянной: $V_{_1}=300~{\rm o}6./{\rm M}$ ин.

Подачу стеклоровинга в экструдер осуществляли двумя способами:

Способ 1. Стеклоровинг с бобины вводили непрерывно через загрузочный патрубок (поз. 13) в зону 1 двухшнекого экструдера при температуре 260 °С с линейной скоростью подачи волокна $V_{_{\rm B}}=18$ м/мин при скорости вращения шнеков экструдера $V_{_{\rm I}}=300$ об./мин. Расход подачи стекловолокна составил $Q_{_{\rm B}}=36$ г/мин.


Полисульфон вводили с помощью гравиметрического дозатора (поз. 12) в загрузочную зону экстру-

дера (зона 1). Скорость подачи ($V_{\Pi C \Phi}$) регулировали в пределах от 3 до 10 об. /мин, при этом расход $Q_{\Pi C \Phi}$ изменялся от 30 до 140 г/мин.

Способ 2. Стеклоровинг с бобины вводили с помощью бокового двухшнекового питателя (поз. 14) в расплав ПСФ, непосредственно в зону 7 материального цилиндра экструдера. Линейная скорость подачи волокна ($V_{\rm B}$) была постоянной и составляла 1.3 м/мин, а расход — 36 г/мин, что обеспечивалось скоростью вращения шнеков экструдера, равной 300 об./мин. Полисульфон в экструдер вводили аналогично способу I.

Концентрацию стекловолокна в ПСФ регулировали путем изменения расхода ПСФ-190 с помощью гравиметрического дозатора (поз. 12), изменяя число оборотов шнека от 3 до 12 об./мин и сохраняя непрерывный расход стекловолокна равным $Q_n = 36$ г/мин.

На рис. 2 представлена зависимость расхода ПСФ-190 от числа оборотов шнека дозатора (поз.12).

Рис. 2. Зависимость расхода ПСФ-190 ($Q_{\Pi KM}$) от числа оборотов шнека дозатора (поз. 12).

Из рис. 2 следует, что с возрастанием числа оборотов шнека дозатора 12 от 3 до 10 об./мин расход ПСФ-190 увеличивается от 40 до 140 г/мин и описывается линейной функцией $Q_{\Pi C \Phi} = K(n-4.2/K) = 14(n-0.3)$ в интервале оборотов от 3 до 10 об/мин, где n- число оборотов шнека дозатора 12; K- коэффициент пропорциональности.

Содержание стеклянного волокна ($\phi_{_B}$) в полисульфоне при постоянном расходе стеклоровинга $Q_{_B}$ = 36 г/мин рассчитывали как: $\phi_{_B} = Q_{_B}/(Q_{_\Pi} + Q_{_B})$, где $Q_{_\Pi}.Q_{_B}$ – расход ПСФ-190 и СВ соответственно, г/мин; $\phi_{_U}$ – доля стекловолокна в ПСФ-190, масс. д.

Для оценки влияния структуры на свойства стеклонаполненного ПСФ массовые доли (ϕ) пересчитывали в объемные единицы ϕ _{...}.

Результаты и их обсуждение

С целью получения ДНПКМ на основе стеклонаполненного ПСФ с разными структурами и обобщенными параметрами были рассчитаны составы для конкретно выбранного наполнителя (стеклянного волокна). Экспериментально для короткого стеклянного волокна был определен по известной методике [4] параметр максимального содержания стекловолокна $\phi_m = 0.36$ об. д.

В таблице представлены составы, обобщенные параметры структуры для дисперсной системы полимер — стекловолокно и классификация ДНПКМ по структурному принципу.

Доля полимерной матрицы в граничном слое и обобщенный параметр М структуры для дисперсных систем с небольшой удельной поверхностью наполнителя в наших расчетах не учитывался.

При переходе ДНПКМ от одного типа структуры к другому изменение обобщенного параметра Θ приводит к варьированию технологических характеристик и эксплуатационных свойств.

Так, при увеличении координационного числа решетки Z, плотности упаковки $k_{y_{II}}$, уменьшении доли полимерной прослойки между дисперсными частицами (обобщенный параметр Θ) и увеличении содержания стеклянного волокна $(\phi_{\scriptscriptstyle B})$ повышается вязкость, ухудшается перерабатываемость и изменяется механизм течения ДНПКМ.

При использовании ВНС-структур с обобщенным параметром $\Theta < 0.20$ об. д. и концентрации стекловолокна более 0.27 об. д. в процессе экструзии при получении стренги наблюдаются ее обрывы и процесс становится нестабильным.

Таким образом, этот метод грануляции имеет ограничения по структурным параметрам ДНПКМ. Для получения систем СНС-2 с Θ от 0.45 до 0.20 об. д. и высоконаполненных с Θ < 0.20 об. д. необходимо использовать так называемый метод грануляции на головке.

Для проведения дальнейших экспериментальных исследований были получены ДНПКМ на основе стеклонаполненного ПСФ со следующими параметрами структуры:

```
- низконаполненные системы ННС: \Theta=0.90 \text{ об. д. и } \phi_{_{\rm H}}=0.09 \text{ об. д.;} - средненаполненные системы СНС-1: \Theta=0.73 \text{ об. д. и } \phi_{_{\rm H}}=0.09 \text{ об. д.;} \Theta=0.60 \text{ об. д. и } \phi_{_{\rm H}}=0.135 \text{ об. д.;} - средненаполненные системы СНС-2: \Theta=0.45 \text{ об. д. и } \phi_{_{\rm H}}=0.185 \text{ об. д.;} \Theta=0.45 \text{ об. д. и } \phi_{_{\rm H}}=0.185 \text{ об. д.;} \Theta=0.40 \text{ об. д. и } \phi_{_{\rm H}}=0.21 \text{ об. д.;} \Theta=0.27 \text{ об. д. и } \phi_{_{\rm H}}=0.25 \text{ об. д.} - высоконаполненные ВНС: \Theta=0.20 \text{ об. д. и } \phi_{_{\rm H}}=0.275 \text{ об. д.}
```

Составы и обобщенные параметры структуры стеклонаполненного І	$TC\Phi$ ($\phi_{m} = 0.36$ об. д., $d = 13$ мкм)
---	--

Содержание стек	лянного волокна	Обобщенные параметры структуры ДНПКМ
φ _н , об. д.	ф, масс. д.	Θ, об. д.
	Низконаполненые ДНПКМ	М с 0.9 > Θ ≥ 0.75 об. д.
0.04	0.09	0.90
	Средненаполненые ДНПК	М с 0.75 > Θ > 0.2 об. д.
	СНС-1: 0.75 > Θ > 0.45 об. д. (ДЕ	НПКМ до предела текучести)
0.085	0.204	0.75
0.09	0.215	0.73
0.11	0.264	0.68
0.135	0.32	0.6
0.15	0.37	0.56
	СНС-2: 0.45 > Θ > 0.2 об. д. (ДН	ПКМ с пределом текучести)
0.183	0.43	0.45
0.21	0.50	0.40
0.25	0.60	0.27
	Высоконаполненные ВНП	${ m KM}{ m c}0.2{\geq}\Theta{\geq}0.0{ m of}$.д.
0.275	0.66	0.2
0.285	0.69	0.016
0.3	0.82	0.01
0.34	0.82	0.01
	Сверхвысоконаполненны	ие ВНПКМ Θ < 0 об. д.
0.37	0.864	-0.1

На рис. 3 представлены зависимости концентрации короткого стеклянного волокна в ДНПКМ ($cnoco6\ 2$) от расхода полисульфона марки ПСФ-190 дозатора поз.12 (2) и на выходе из экструзионной головки (1) при постоянной скорости подачи волокна (36 г/мин).

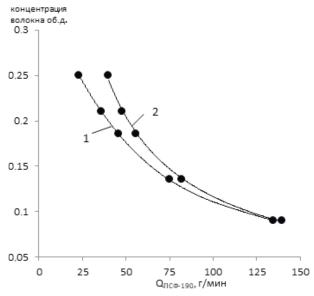


Рис. 3. Зависимость концентрации стеклянного волокна в ДНПКМ от расхода ПСФ-190 дозатора 12 (2) и на выходе из головки экструдере (1).

Из рис. З следует, что в области 75–150 г/мин данные расхода в головке экструдера и в гравиметрическом дозаторе совпадают, при дальнейшем уменьшении расхода до 25 г/мин разница составляет ~15%.

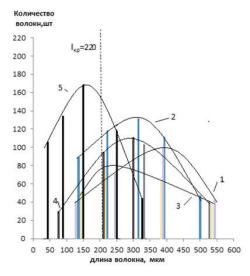
В процессе введения непрерывного стеклянного волокна и получения ДНПКМ на основе ПСФ в экструдере происходит дробление и уменьшение длины волокна, что, безусловно, оказывает влияние на физико-механические характеристики стеклонаполненного материала.

В работе [4] показано, что для создания высокопрочных стеклонаполненных композиционных материалов с короткими волокнами на основе полимерных матриц необходимо соблюдать условие: длина волокна $(I_{\scriptscriptstyle B})$ должна превышать значение критической длины волокна $(I_{\scriptscriptstyle KD})$.

Критическую длину ($l_{\rm kp}$) стеклянного волокна "Ovens corning" марки EC17-1200 в ПСФ рассчитывали по формуле:

$$l_{\rm kp} = \frac{\sigma_{\rm B}}{2\tau} \cdot d$$

Если принять, что $\tau \approx \frac{\sigma_{\scriptscriptstyle \mathsf{TM}}}{\sqrt{3}}$, тогда


$$l_{\text{kp}} \approx 0.866 \cdot \frac{\sigma_{_{\text{B}}}}{\sigma_{_{\text{TM}}}} \cdot d$$
,

где $\sigma_{_B}$ — прочность стеклянного волокна при растяжении (2700 МПа); d — диаметр волокна (13 мкм); $\sigma_{_{TM}}$ — предел текучести ПСФ-190 (76 МПа); τ — разрушающие напряжение при сдвиге по границе раздела волокно — полимерная матрица, МПа.

Расчетное значение критической длины стекловолокна "Owens corning" марки EC17-1200 в матрице $\Pi C\Phi$ составило ~220 мкм.

Для построения кривых распределения стекловолокон по размерам в ПСФ использовали прибор Микрофот тип 5ПО-1 (фирма «Москинап», Россия). Образцы стекловолокон для исследований получали с помощью двухступенчатого отжига ДНПКМ в муфельной печи, согласно ГОСТ-15973-82.

На рис. 4 приведены кривые распределения стеклянных волокон по длине в ДНПКМ на основе ПСФ в зависимости от способа введения ($cnoco6\ I$ – кривая 5 и $cnoco6\ 2$ – кривые 1—4) при различном содержании волокна.

Рис. 4. Кривые распределения стеклянных волокон по длине в ПСФ-190 при введении по *способу 1* (5) и *способу 2* (1–4) и разном содержании волокна: 13.5% об. (1, 5), 18.5% об. (2), 21% об. (3) и 25% об. (4).

Из рис. 4 следует, что при введении стекловолокна в загрузочную зону экструдера (способ l, кривая 5) происходит интенсивное измельчение стеклянных волокон вследствие сухого трения о гранулят ПСФ, шнеки и материальный цилиндр экструдера в загрузочной зоне, при этом длина волокна в композиционном материале ниже значений $l_{\rm kp}$ и составляет $l_{\rm cp} \approx 150$ мкм.

Список литературы:

- 1. Симонов-Емельянов И.Д. Построение структур в дисперсно-наполненных полимерах и свойства композиционных материалов // Пластические массы 2015. № 9-10. С. 29–36.
- 2. Михайлин Ю.А. Термоустойчивые полимеры и полимерные материалы. СПб.: Профессия, 2006. 259 с.

При введении стеклянных волокон непосредственно в расплав ПСФ в зону 7 материального цилиндра экструдера (кривые 1–5) также наблюдается их измельчение ($cnoco6\ 2$). Однако длина волокна в этом случае в области $13.5\ u\ 18.5\%$ об. составляет $1_{\rm cp}\approx 400$ мкм, что превышает значение критической длины волокна в ПСФ примерно в 2 раза ($1_{\rm kp}\approx 220$ мкм). Для составов с содержанием волокна 25% об. его средняя длина достигает приблизительно 300 мкм, что примерно 1.5 раза больше $1_{\rm kp}$.

Прочность при растяжении ДНПКМ на основе ПСФ и стекловолокна при $1_{\rm cp}\approx 400$ мкм и содержании волокна 13.5–18.5% об. достигает максимального значения — 120 МПа, что превышает прочность полимерной матрицы в 1.7 раз и не уступает зарубежным аналогам.

При введении стекловолокна по способу l значение длины волокна в композиционном материале ниже значений $l_{\rm kp}$ ($l_{\rm cp} \approx 150$ мкм), а прочность ДНПКМ не превышает 75 МПа, что практически равно прочности ПСФ, т.е. в данном случае стекловолокно не работает как армирующий наполнитель.

Заключение

Таким образом, спроектированы составы ПСФ с короткими стеклянными волокнами на базе основных положений теории решеток и упаковок, проведена их классификация по структурному принципу, установлена оптимальная область содержания стеклянного волокна (13.5–18.5% об.).

Описана технология получения ДНПКМ на основе ПСФ и короткого стеклянного волокна ($cnoco6\ 2$) и определены оптимальные параметры смешения для создания композиций с длинной стекловолокна волокна, превышающей l_{∞} .

Впервые приведены данные по оптимальным параметрам структуры ДНПКМ на основе ПСФ и короткого стеклянного волокна, которые соответствуют средненаполненным дисперсным системам.

Благодарности

Авторы выражают благодарность сотрудникам лаборатории технологии композиционных материалов AO «Институт пластмасс им. Г.С. Петрова» за оказанную помощь при проведении данного исследования.

Авторы заявляют об отсутствии конфликта интересов.

References:

- 1. Simonov-Emel'yanov I.D. Building structures in dispersion-filled polymers and properties of composite materials. *Plasticheskie massy* = Polymer Science and Technology. 2015;9(10):29-36 (in Russ.).
- 2. Mikhaylin Yu.A. Heat resistant polymers and polymeric materials. Saint Petersburg: Professiya Publ., 2006;261-298 (in Russ.).

- 3. Баранов А.Б., Пексимов О.Е., Прудскова Т.Н., Андреева Т.И., Симонов-Емельянов И.Д., Шембель Н.Л. Исследование технологических характеристик материалов на основе полисульфона // Тонкие химические технологии. 2016. Т. 11. № 5. С. 87–90. https://doi.org/10.32362/2410-6593-2016-11-5-87-90
- 4. Симонов-Емельянов И.Д., Шембель Н.Л., Прокопов Н.И., Ушакова О.Б., Суриков П.В. Методы определения технологических свойств наполнителей и полимерных материалов. М.: ИПЦ МИТХТ, 2014. С. 63–74.
- 3. Baranov A.B., Peksimov O.E., Prudskova T.N., Andreeva T.I., Simonov-Emel'yanov I.D., Shembel N.L. Study on technology characteristics materials based on polysulfone. *Tonkie khimicheskie tekhnologii = Fine Chemical Technologies*). 2016;11(5):87-90 (in Russ.). https://doi.org/10.32362/2410-6593-2016-11-5-87-90
- 4. Simonov-Emel'yanov I.D., Spembel' N.L., Prokopov N.I., Ushakova O.B., Surikov P.V., Markov A.V. Methods for determination of technological properties of fillers and polymer materials. Moscow: Publishing and Printing Center of MITHT, 2014;63-74 (in Russ.).

Об авторах:

Баранов Артем Борисович, аспирант кафедры химии и технологии переработки пластмасс и полимерных композитов Института тонких химических технологий имени М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет» (Россия, 119571, Москва, пр. Вернадского, д. 86). E-mail: qsefdesx@gmail.com. Scopus Author ID 57194107911

Андреева Татьяна Ивановна, доктор технических наук, первый заместитель генерального директора АО «Институт пластмасс им. Г.С. Петрова» (Россия, 111024, Москва, Перовский проезд, д. 35). Scopus Author ID 7005954791

Симонов-Емельянов Игорь Дмитриевич, доктор технических наук, профессор, заведующий кафедрой химии и технологии переработки пластмасс и полимерных композитов Института тонких химических технологий имени М.В. Ломоносова ФГБОУ ВО «МИРЭА – Российский технологический университет» (Россия, 119571, Москва, пр. Вернадского, д. 86). Scopus Author ID 6603181099

Пексимов Олег Евгеньевич, начальник лаборатории испытаний АО «Институт пластмасс им. Г.С. Петрова» (Россия, 111024, Москва, Перовский проезд, д. 35).

About the authors:

Artyom B. Baranov, Postgraduate Student of the Chair of Chemistry and Technology of Plastics and Polymer Composites, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow 119571, Russia).

Tatyana I. Andreeva, Dr. of Sci. (Engineering), First Deputy General Director, JSC "G.S. Petrov Institute of Plastics" (35, Perovskii proezd, Moscow 111024, Russia). Scopus Author ID 7005954791

Igor D. Simonov-Emel' yanov, D.Sc. (Engineering), Professor, Head of the Chair of Chemistry and Technology of Plastics and Polymer Composites, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University (86, Vernadskogo pr., Moscow 119571, Russia). Scopus Author ID 6603181099

Oleg E. Peksimov, Head of the Testing Laboratory, JSC "G.S. Petrov Institute of Plastics" (35, Perovskii proezd, Moscow 111024, Russia).

Для цитирования: Баранов А.Б., Андреева Т.И., Симонов-Емельянов И.Д., Пексимов О.Е. Структура, составы и получение литьевых композиционных материалов на основе стеклонаполненного полисульфона // Тонкие химические технологии. 2019. Т. 14. № 4. С. 39–44. https://doi.org/10.32362/2410-6593-2019-14-4-39-44

For citation: Baranov A.B., Andreeva T.I., Simonov-Emel'yanov I.D., Peksimov O.E. The structure, composition and preparation of injection-molded composite materials based on glass-filled polysulfone. Tonkie Khimicheskie Tekhnologii = Fine Chemical Technologies. 2019;14(4):39-44 (in Russ.). https://doi.org/10.32362/2410-6593-2019-14-4-39-44