УДК 004.94:546.86.681

АЛГОРИТМИЧЕСКИЕ ПРОГРАММЫ ПОДБОРА ОПТИМАЛЬНЫХ УСЛОВИЙ РОСТА ПРИ ВЫРАЩИВАНИИ ЭПИТАКСИАЛЬНЫХ СЛОЕВ НА ОСНОВЕ GaAs METOДОМ МОС-ГИДРИДНОЙ ЭПИТАКСИИ

*A.A. Мармалюк, начальник отдела, Д.Е. Арбенин, аспирант, Е.В. Бурляева, профессор кафедра Информационные технологии МИТХТ им. М.В. Ломоносова, * ООО «Сигм Плюс», Москва

e-mail: arbenina@mitht.ru

P

азработан алгоритм, позволяющий при известных условиях проведения процесса МОГФЭ (металлоорганическая газофазная эпитаксия) определить характеристики получаемых слоев на основе GaAs и важнейшие технологические параметры процесса эпитаксии с использованием полуэмпирических зависимостей.

Ключевые слова: алгоритм, имитация, МОГФЭ, тренажер, эпитаксия.

Введение

Лидирующее положение области создания полупроводниковых гетероструктур (ΓC) на основе соединений $A^{\Pi I}B^{V}$ и их твердых растворов занимает газофазная эпитаксия с применением металлоорганических соединений (МОС) элементов третьей (A^{III}) и гидридов элементов пятой (B^V) групп - МОС-гидридная ГФЭ. Выращиваемые ГС являются основой для важнейших элементов большинства современных приборов оптоэлектроники и твердотельной электроники. Одно из самых востребованных на настоящий момент полупроводниковых соединений типа $A^{III}B^{V}$ – арсенид галлия (GaAs).

МОС-гидридная эпитаксия обладает следующими преимуществами по сравнению с другими методами эпитаксиальной технологии: гибкие условия для создания гетероперехода с требуемыми характеристиками, высокая чистота и однородность выращиваемых слоев по толщине и по составу, высокие скорость и селективность роста, относительно простая конструкция реактора, высокая производительность, возможный контроль процесса роста in situ.

Однако у метода имеется и ряд ограничений: дорогостоящие реагенты и др. расходные материалы, дорогостоящие установки, опасные реагенты, необходимость прецизионного контроля многих параметров процесса (давление и температура в реакционной зоне, расход реагентов и т.д.).

В [1] описана создаваемая компьютерная программная система-тренажер для установки «Сигмос-130», позволяющая в некоторой степени компенсировать влияние ограничивающих факторов. Разработка программы выполнена в связи с существующей необхо-

димостью обучения специалистов и студентов навыкам работы на эпитаксиальном оборудовании. Обучение не на реальной установке, а с помощью компьютерной программы, демонстрирующей возможности установки, позволяет не только в достаточной мере подготовить персонал к последующей работе в нормальном режиме, но и, благодаря возможности моделировать нестандартные ситуации и способы выхода из них, минимизировать потери для производства в экстренных случаях. При использовании тренажера в процессе обучения персонал не подвергается воздействию опасных реагентов, не расходуются дорогостоящие материалы и не подвергается износу и риску дорогостоящее оборудование.

Важную роль при проведении современных технологических процессов играет их теоретическое описание. Моделирование процессов и знание закономерностей влияния условий их проведения на характеристики получаемого продукта в значительной мере снижают расход времени и средств на выбор оптимальных режимов, а также позволяют эффективно совершенствовать последние. Однако моделирование технологического процесса, в том числе МОС-гидридной эпитаксии, основанное на термодинамическом и кинетическом расчетах, описании процессов газодинамики, тепло- и массообмена в системе, трудоемко, требует большого количества экспериментальных данных и детального знания механизмов химических реакций [2]. Отличительной особенностью программной системы является примененный в ней подход к имитации процесса эпитаксиального выращивания - без детализации физических и химических механизмов его протекания.

Такой подход позволяет на основе сравнительно простых полуэмпирических зависимостей, выявленных для данной модели установки, получать качественно и количественно верное описание закономерностей влияния технологических параметров процесса на характеристики эпитаксиальных слоев, с высокой точностью выбирать априори режимы выращивания структур разнообразных конструкций и оптимизировать используемые режимы при незначительных временных затратах.

статье рассматривается алгоритм, реализованный в программной системе и позволяющий определить важнейшие технологические параметры процесса и характеристики выращиваемых эпитаксиальных известных условиях слоев при Алгоритм предполагает выращивание эпитаксиальных слоев (ЭС) на основе GaAs нелегированных или легированных одной из наиболее распространенных примесей (углеродом — С, цинком — Zn, кремнием — Si). На рис. 1 представлена схема установки «Сигмос-130», имеющая место при выращивании ЭС четырех указанных типов.

«Сигмос-130» имеет блочную структуру, включающую камеру подачи и смешения парогазовой смеси, камеру роста (с реакторным отсеком), модуль управления и блок с насосами для создания вакуума. Конструкция кварцевого реактора - горизонтальная; вращение дискообразного подложкодержателя происходит вокруг вертикальной оси. Парогазовые потоки с реагентами вводятся в реактор по центру: газообразные реагенты вводятся самостоятельно (AsH₃ – арсин, CCl₄ – тетрахлорметан, SiH₄ - силан), жидкие (TEGa триэтилгаллий, DEZn – диэтилцинк) – захватываются отдельным потоком газа-носителя (высокочистый Н2); из реактора поток газаносителя с остатками реагентов выходит по боковым каналам.

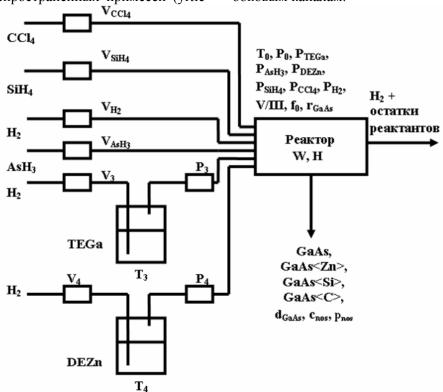


Рис. 1. Схема установки для выращивания ЭС методом МОГФЭ.

Входные параметры процесса задаются до начала процесса выращивания, в алгоритме учтены: давление (P_0) и температура (T_0) в реакторе, температуры в испарителях (T_3, T_4) и давления в подводящих ветках (P_3, P_4) , объемные расходы веществ $(V_{AsH_3}, V_{SiH_4}, V_{CCl_4}; V_{H_2}-$ основной поток газа-носителя; V_3 , V_4- потоки V_2 , предназначенного для переноса соответствующих реагентов), размеры реакционной камеры (W, H- ширина и высота), время роста слоя (t). От входных параметров зависят ожидаемые рабочие

параметры процесса, к которым относятся: скорость роста эпитаксиального слоя (r_{GaAs}) , объемные расходы TEGa (V_{TEGa}) и DEZn (V_{DEZn}) , отношение V/III (отношение парциальных давлений соединений-поставщиков элементов V и III групп) в газовой фазе, скорость парогазовой смеси в реакторе (f_0) , парциальные давления (P_i) , мольные расходы (n_i) и мольные доли (x_i) веществ в парогазовой фазе. Характеристики выращенных ЭС (или выходные параметры процесса) находятся в зависимости от входных и

рабочих параметров: толщина слоя (d_{GaAs}), концентрация (c_{car}) и подвижность (p_{car}) носителей заряда в ЭС.

Результаты

Часто используемые режимы выращивания слоев заранее обработаны и введены в память управляющего компьютера в виде таблиц. Работа при других режимах предполагает заблаговременный поиск необходимых входных параметров в соответствии с требуемыми выходными по следующему алгоритму действий (рис. 2).

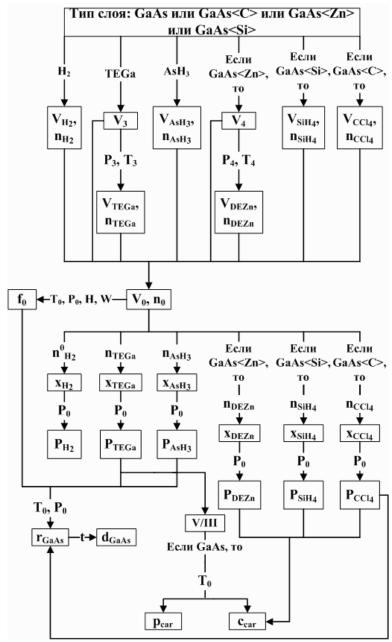


Рис. 2. Алгоритм действий по прогнозированию рабочих и выходных параметров процесса МОГФЭ на основе входных параметров.

План выполнения расчетов следующий: 1)Задаются исходные параметры процесса

 $T_0,\ T_3,\ T_4,\ P_0,\ P_3,\ P_4,\ V_{AsH_3},\ V_{SiH_4},\ V_{CCl_4},\ V_{H_2},\ V_3,$ V₄, W, H, t. Для всех параметров, кроме t, W и Н, определены оптимальные промежутки варьирования: V_{H_2} =10-30, V_{AsH_3} =0.3-1.0, V_3 =0.1-0.5, V_{CCl_4} =0.01-0.1, V_{SiH_4} =0.01-0.1, V_4 =0.01-0.2 $(\pi/Mин)$; $P_0=50-150$, $P_3=400-1000$, $P_4=400-1000$ (мбар), $T_3=10-20$, $T_4=10-20$, $T_0=600-770$ (°C). Размеры реактора являются конструктивными особенностями установки W=0.15, H=0.015

(м), время t, (с) зависит от назначения конкретной структуры.

2)Расход **TEGa** вычисляется ПО экспериментальной зависимости:

$$V_{TEGa} = \frac{V_3 \cdot 1.333 \cdot 10^{(8.083 - \frac{2162}{T_3})}}{P_3},$$

$$V_{TEGa} = (\pi/\text{мин}), V_3 - (\pi/\text{мин}), T_3 - (K), P_3 -$$

где V_{TEGa} – (л/мин), V_3 – (л/мин), T_3 – (K), P_3 – (Па); постоянные величины в данной и последующих зависимостях, величины имеют место и не оговорено противного, определены из статистической обработки экспериментальных данных.

3) Если вводится примесь Zn, то расход DEZn вычисляется по экспериментальной зависимости:

$$V_{DEZn} = \frac{V_4 \cdot 1.333 \cdot 10^{(8.280 - \frac{2109}{T_4})}}{P_4}, \tag{2}$$

где V_{DEZn} – (л/мин), V_4 – (л/мин), T_4 – (K), P_4 – (Πa).

4) Суммарный поток газа-носителя через реактор:

$$V^{0}_{H_{2}} = \sum V^{i}_{H_{2}},$$
 (3)

где $V^0_{H_2}$ – суммарный объемный расход газаносителя (л/мин), $V^i_{H_2}$ – объемный расход газа-носителя в каждой из веток, где он используется (л/мин); при выращивании нелегированного GaAs, легированного Si и C $V^i_{H_2}$: V_{H_2} , V_3 ; при выращивании легированного Zn $V^i_{H_2}$: V_{H_2} , V_3 , V_4 .

5) Суммарный поток парогазовой смеси через реактор:

$$V_0 = \sum V_i , \qquad (4)$$

где V_0 — (л/мин), V_i — объемный расход каждого из веществ (л/мин); при выращивании нелегированного GaAs V_i : V_{TEGa} , V_{AsH_3} , $V^0_{H_2}$; при выращивании легированного Si V_i : V_{TEGa} , V_{AsH_3} , $V^0_{H_2}$, V_{SiH_4} ; при выращивании легированного C V_i : V_{TEGa} , V_{AsH_3} , $V^0_{H_2}$, V_{CCl_4} ; при выращивании легированного Zn V_i : V_{TEGa} , V_{AsH_3} , $V^0_{H_2}$, V_{DEZn} .

6) Мольный расход каждого из веществ в парогазовой смеси:

$$n_i = \frac{V_i}{22.4}, \tag{5}$$

где n_i — (моль/мин), V_i — объемный расход каждого из веществ (л/мин); при выращивании нелегированного GaAs V_i : V_{TEGa} , V_{AsH_3} , $V_{H_2}^0$, n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} ; при выращивании легированного Si V_i : V_{TEGa} , V_{AsH_3} , $V_{H_2}^0$, V_{SiH_4} , n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{SiH_4} ; при выращивании легированного C V_i : V_{TEGa} , V_{AsH_3} , $V_{H_2}^0$, V_{CCl_4} , n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{CCl_4} ; при выращивании легированного Zn V_i : V_{TEGa} , V_{AsH_3} , $V_{H_2}^0$, V_{DEZn} , n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{DEZn} ; сделано допущение об объеме одного моля 22.4 л, приемлемое в условиях процесса.

7) Суммарный мольный поток парогазовой смеси через реактор:

$$\mathbf{n}_0 = \sum_i \mathbf{n}_i \;, \tag{6}$$

где n_0 — (моль/мин), n_i — мольный расход каждого из веществ (моль/мин); при выращивании нелегированного GaAs n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} ; при выращивании легированного Si

 n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{SiH_4} ; при выращивании легированного C n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{CCl_4} ; при выращивании легированного Zn n_i : n_{TEGa} , n_{AsH_3} , n_{H_2} , n_{DEZn} .

8) Мольные доли каждого из веществ в парогазовой смеси:

$$\mathbf{x}_{i} = \mathbf{n}_{i} / \mathbf{n}_{0} \,, \tag{7}$$

9) Парциальные давления каждого из веществ парогазовой смеси в реакторе:

$$\mathbf{P}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} \cdot \mathbf{P}_{\mathbf{0}},\tag{8}$$

где x_i — мольная доля каждого из веществ (мол.дол), P_0 — общее давление в реакторе (Па), P_i — (Па); при выращивании нелегированного GaAs x_i : x_{TEGa} , x_{AsH_3} , x_{H_2} , P_i : P_{TEGa} , P_{AsH_3} , P_{H_2} ; при выращивании легированного Si x_i : x_{TEGa} , x_{AsH_3} , x_{H_2} , x_{SiH_4} , P_i : P_{TEGa} , P_{AsH_3} , P_{H_2} , P_{SiH_4} ; при выращивании легированного C x_i : x_{TEGa} , x_{AsH_3} , x_{H_2} , x_{CCl_4} , P_i : P_{TEGa} , P_{AsH_3} , P_{H_2} , P_{CCl_4} ; при выращивании легированного Zn x_i : x_{TEGa} , x_{AsH_3} , x_{H_2} , x_{DEZn} , P_i : P_{TEGa} , P_{AsH_3} , P_{H_2} , P_{DEZn} .

10) Отношение V/III в парогазовой смеси:

$$V/III = P_{AsH_3}/P_{TEGa}, (9)$$

где $P_{AsH3} - (\Pi a), P_{TEGa} - (\Pi a).$

11) Скорость парогазовой смеси в реакторе при условиях проведения процесса роста определяется на основе экспериментальной зависимости:

$$f_0 = \frac{V_0 \cdot T_0}{60 \cdot H \cdot W \cdot 273 \cdot P_0}, \tag{10}$$

где f_0 – (м/с), V_0 – (л/мин), T_0 – (K), P_0 – (Па), H – м, W – м; 273 – температура при стандартных условиях, K; 60 – коэффициент перехода к системе единиц СИ.

12) Скорость роста эпитаксиального слоя определяется на основе экспериментальных зависимостей: во-первых, без учета скорости парогазовой смеси в реакторе [3]:

$$r_{GaAs_1} = 2.8 \cdot P_{TEGa}^{0.99} \cdot P_{AsH_3}^{0.06} \cdot (\frac{T_0}{298})^{1.8},$$
 (11)

где r_{GaAs_1} — скорость роста по первому варианту (нм/мин), T_0 — (K), P_{AsH_3} — (Па), P_{TEGa} — (Па), 298 — температура при нормальных

условиях, К;

13) и корректировкой по скорости парогазовой смеси и общему давлению в реакторе:

$$r_{GaAs_1_ed} = r_{GaAs_1} \cdot (\frac{f_0 \cdot P_{*0}}{P_0 \cdot f_{*0}})^{1/2},$$
 (12)

где $r_{GaAs_1_ed}$ – скорость роста по первому варианту с корректировкой (нм/мин), r_{GaAs 1} -(HM/MИH), $f_0 - (M/c)$ и $P_0 - (\Pi a)$ – действительные параметры состояния реакторе, $f_{*0} = 8.464$ (м/с) и $P_{*0} = 7874$ (Па) – стандартные параметры состояния в реакторе, при которых была получена зависимость (11);

скорости 14) во-вторых, c учетом парогазовой смеси, но без явного учета температуры роста и давления AsH₃ [3]:

$$r_{GaAs_2} = 1000 \cdot P_{TEGa} \cdot (f_0/P_0)^{1/2}$$
, (13) где r_{GaAs_2} — скорость роста по второму варианту (нм/мин), f_0 — (м/с), P_0 — (Па), P_{TEGa} — (Па), 1000 — коэффициент пересчета давления из мбар в Па;

15) и корректировкой по температуре роста в реакторе:

$$r_{\text{GaAs}_2_\text{ed}} = r_{\text{GaAs}_2} \cdot (T_0 / T_{*0})^{1/2},$$
 (14)

где $r_{GaAs\ 2\ ed}$ – скорость роста по второму варианту с корректировкой (нм/мин), r_{GaAs 2} -(HM/MUH), $T_0 - (K)$ действительная средняя температура в реакторе, $T_{*0} = 1023$ (K) – стандартная средняя температура в реакторе, при которой получена зависимость (13);

16) усредненное значение скорости роста определяется из уравнения:

$$r_{GaAs} = (r_{GaAs_1_ed} + r_{GaAs_1_ed})/2$$
, (15) где r_{GaAs} — усредненная по двум вариантам расчета скорость роста слоя (нм/мин), $r_{GaAs_2_ed}$ — скорость роста по второму варианту с корректировкой (нм/мин), $r_{GaAs_1_ed}$ — скорость роста по первому варианту с корректировкой (нм/мин).

17) Процесс легирования GaAs углеродом осложняется протеканием побочных реакций травления (т.к. в качестве соединенияпоставщика атомов С выступает CCl₄); в этом случае определение скорости роста слоев

$$p_{car} = p_0 \cdot \left(1 + \left(\frac{T_0}{T_{0(1)}}\right)^{-a}\right)^{-b} \cdot \left(1 + \left(\frac{T_0}{T_{0(2)}}\right)^{a_1}\right)^{-b_1} \cdot \left(1 + \left(\frac{P_{AsH_3}}{P_{AsH_3(1)}}\right)^{-a_2}\right)^{-b_2},$$

где p_{car} – подвижность носителей заряда в слое, $(cm^2/(B \cdot c))$; T_0 (K); $p_0 = 7188$, $T_{0(1)} =$ 900.0, $T_{0(2)} = 1275$, a = 300.0, b = 0.007260, $a_1 =$ 10.20, $b_1 = 3.870$, $P_{AsH_3(1)} = 220.0$, $a_2 = 13.20$, b_2 = 0.001520 - постоянные коэффициенты уравнения, полученные путем обработки экспериментальных

осуществляется на основе соотношения (15) компоненты, вычетом определяемой травлением [4]:

$$\begin{split} r_{e(GaAs)} &= k_{e} \cdot n_{CCl_{4}}^{a_{e}} \cdot r_{GaAs}^{b_{e}} \times \\ &\times n_{AsH_{3}}^{c_{e}} \cdot exp(\frac{E_{a_{e}}}{k_{b} \cdot T_{0}}), \end{split} \tag{16}$$

где r_{GaAs} – скорость роста GaAs, нм/мин; $r_{e(GaAs)}$ - снижение скорости роста за счет травления, $_{\rm HM}/_{\rm MUH};$ $n_{\rm CCl_4},$ $n_{\rm AsH_3}$ – мольные расходы четыреххлористого углерода и арсина, соответственно, мкмоль/мин; k_e, a_e, b_e, c_e, E_{ae} константы (экспериментально определены значения, соответственно: 1150, 0.42, 1, -0.05, 0.77); k_b – константа Больцмана.

18) Толщина выращиваемого эпитаксиального слоя:

$$d_{GaAs} = r_{GaAs} \cdot t , \qquad (17)$$

где d_{GaAs} – (нм); t – (мин); r_{GaAs} – усредненная по двум вариантам расчета скорость роста слоя (нм/мин).

19) Фоновая концентрация носителей заряда, при выращивании нелегированного эпитаксиального слоя GaAs может быть определена на основе функциональной зависимости

$$c_{car} = c_0 \cdot (1 + (\frac{T_0}{T_{0(1)}})^{-a})^b \times \times (1 + (\frac{T_0}{T_{0(2)}})^{a_1})^{b_1} \cdot (1 + (\frac{1 + P_{AsH_3}}{P_{AsH_3(1)}})^{-a_2})^{b_2},$$
(18)

где ссаг - концентрация носителей заряда в слое, (см⁻³); T_0 (K); $c_0 = 5.140 \cdot 10^{14}$, $T_{0(1)} =$ 856.0, $T_{0(2)} = 973.0$, a = 92.80, b = 0.05950, $a_1 =$ 64.80, $b_1 = 0.2130$, $P_{AsH_3(1)} = 15.00$, $a_2 = 1.500$, $b_2 = 0.4840$ – постоянные коэффициенты уравнения, полученные из обработки экспериментальных данных [3] в программном пакете Microsoft Excel.

20) Подвижность носителей заряда, при выращивании нелегированного эпитаксиального слоя GaAs может быть определена на основе функциональной зависимости:

$${}^{a_1})^{-b_1} \cdot \left(1 + \left(\frac{P_{AsH_3}}{P_{AsH_3(1)}}\right)^{-a_2}\right)^{-b_2},$$
 (19)

программном пакете Microsoft Excel..

21) Концентрация носителей заряда при использовании легирующих примесей (в предположении равенства концентраций носителей заряда и атомов легирующей примеси) определяется по экспериментальной зависимости [4]:

$$c_{car} = K_X \cdot P_X^{y_X} \cdot P_{TEGa}^{a_X} \cdot P_{AsH_3}^{b_X} \cdot exp(\frac{E_X}{k_b \cdot T_0}), \qquad (20)$$

где c_{car} — концентрация атомов легирующей примеси в эпитаксиальном слое (см $^{-3}$); P_{AsH_3} — (Па), P_{TEGa} — (Па); P_X — парциальное давление лигатуры, возможные значения P_X : P_{SiH_4} , P_{DEZn} , P_{CCl_4} ; k_b — константа Больцмана; T_0 , (К) — абсолютная средняя температура роста; энергия активации внедрения примеси E_X , константа K_X и показатели степени (a_X , b_X , y_X) зависят от используемой примеси и представлены в таблице (1):

Таблица 1. Постоянные величины в уравнении для расчета концентрации легирующей примеси в ЭС GaAs

		примсси в ЭС Оалъ.			
Примесь	K_X	$a_{\rm X}$	b_{X}	y _X	E_X , $\ni B$
Si	$9.6 \cdot 10^{25}$	-0.4	-0.02	0.9	-1.4
Zn	$1.3 \cdot 10^6$	0.002	0.5	1.1	2.4
C	$2.7 \cdot 10^{8}$	3.9	-0.2	0.6	2.1

Проверка адекватности описания предлагаемыми моделями экспериментальных данных может быть оценена на основе следующих графических зависимостей:

Рис. 3. Сравнение расчетных значений скорости роста эпитаксиальных слоев на основе GaAs с экспериментальными значениями скорости роста.

Совпадение экспериментальных и расчетных значений одной и той же величины отражает биссектриса прямого угла. Точками отмечены смещения, вызванные приближением моделей. Каждая точка на графиках получена при различных условиях, однако обе составляющие отдельной точки —

расчетная и экспериментальная — получены при одинаковых условиях. Точность определения экспериментальных величин составляет 5%, адекватность моделей подтверждается вхождением расчетных точек в диапазон погрешности измерений. Такой вариант проверки использован в связи с влиянием на исследуемые величины большого числа факторов и, соответственно, возникновением затруднений при оценке другими методами.

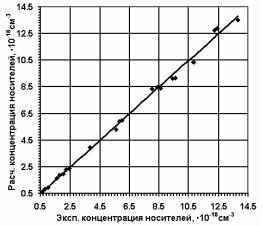


Рис. 4. Сравнение расчетных значений концентрации носителей заряда в легированных слоях GaAs с экспериментальными значениями концентрации носителей заряда.

Сравнение полученных моделей с используемыми в [2] позволяет сделать вывод о значительно большей простоте первых, что в совокупности с положительными результатами проверки адекватности позволяет сделать заключение о достижении поставленных при разработке алгоритма целей.

Выводы

Разработан алгоритм, позволяющий при известных условиях проведения процесса выращивания определить характеристики получаемых слоев на основе GaAs важнейшие технологические параметры процесса МОС-гидридной эпитаксии использованием относительно простых полуэмпирических зависимостей. Проверена адекватность важнейших зависимостей.

ЛИТЕРАТУРА:

- 1. Бурляева, Е. В. Создание программного комплекса на базе имитационного моделирования процесса МОС-гидридной эпитаксии полупроводниковых структур / Е. В. Бурляева, Д. Е.Арбенин // Теория и практика имитационного моделирования и создания тренажеров : сб. статей Юбилейной Междунар. научно-практической конф., Пенза, Россия, 22–24 мая 2007. Пенза, 2007. С. 106–108.
 - 2. www.Aixtron.com. Growth of nitride films.
- 3. Мармалюк, А. А. Получение GaAs методом MOC-гидридной эпитаксии / А. А. Мармалюк // Известия вузов. Материалы электронной техники. -2004. -№ 4. -ℂ. 21–26.
- 4. Мармалюк, А. А. Легирование GaAs в условиях MOC-гидридной эпитаксии / А. А. Мармалюк // Известия вузов. Материалы электронной техники. 2004. № 3. С. 14–19.