
67Fine Chemical Technologies 2016 Vol. 11 No 1

ABOUT SOME SUPPLEMENTARY POSSIBILITY FOR NUMERICAL SOLUTION 
OF PARTIAL DIFFERENTIAL EQUATIONS

A.B. Chaadaev@

A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences,
Moscow, 119991 Russia
@ Corresponding author e-mail: vdcentr@rambler.ru

A substitution of an non-homogeneous term and of a differential operator by the difference 
of Laplace operators in the direct co-ordinate system and in the turned one in the partial 
differential equations of first, second and third order is proposed. The numerical solution 
obtained by solving the substituting equation corresponds to the exact solution of the initial 
equations.
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The computer modeling of chemical processes 
based on solving differential equation systems of var-
ious orders requires improving the solution methods 
and checking the obtained results. The development of 
numerical methods inevitably requires searching and 
checking new principles of numerical representation of 
individual chemical objects. Formulating the research 
objective as boundary value problems is most conve-
nient for chemical technology. Such approach becomes 
necessary when specifying NMR data of unstable samples, 
designing and controlling processes of rare elements liquid 
extraction and forecasting the behavior of materials in case 
of long influence of media inaccessible to experiment.

When solving a boundary value problem by the 
grid method, it is required to determine the values of   

 function satisfying a given differential equa-
tion in a range with specified boundary conditions. The 
search range is covered by a set of equidistant points 
(grid). The distance to any adjacent point is equal to 
the grid size Δgrid=Δx=Δy. Let us replace members 
containing differentiation in the differential equation 
with members containing algebraic operations. (This 
is referred to as creating approximation equations.) 
Let us solve the obtained system of equations. The re-
quirement of obtaining a high precision of the numer-
ical solution can be satisfied by applying more precise 
forms of approximation equations. In order to do this, 
the function values in the grid nodes (x+Δx, y+Δy), 
(x+Δx, y-Δy), (x-Δx, y+Δy) and (x-Δx, y-Δy) are usu-
ally introduced in the derivatives of the finite-difference 
operator along with the function values in the grid nodes 
(x, y), (x +Δx, y), (x, y +Δy), (x-Δx, y) and (x, y-Δy) 
[1]. This introduction in the process of the Laplace op-
erator creation can be defined as the simultaneous use 
of the direct and rotated operators.

The possibility of using the Laplace operator in a 
rotated coordinate system was used in [1] and [2] for 
solving the Poisson equation at boundary conditions 
corresponding to the precise solution.

When solving the equation with the use of the fi-
nite difference method, the initial second-order differ-

ential equation  

was replaced with the equation

,

where  is the Laplace operator in the Carte

sian coordinate system (x,y), and  is  the La

place operator in the coordinate system  rotated 
by 45° with respect to the ordinary coordinate system. 
Such difference in the Laplace operators corresponds 
to the Miln operator presented in [4]. The possibility 
of such replacement was explained in [2] by the equal-
ity of the direct and rotated Laplace operators in co-
ordinate systems  and  in the whole range 
including the boundaries. In the process of the study 
researchers were forced to discard this explanation.

Particularly, it was found that finite-difference equa-

tion    is  true  only  for  some 

functions and under conditions 
. But Δx and Δy val-

ues can be both tending to zero and finite. It is obvi-
ous that the case in point is the existence of a structure 
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expressed by the above equation in such functions. 
Using this equation allowed obtaining precise solutions 
only by means of the values of the corresponding func-
tion at the boundary without using source functions f (x,y)  
(which are present in the Poisson equation) in the fi-
nite-difference equations. In a more general case the 
structure of the functions is expressed by equation 

,   where 

 is a function depending on  x,  y,  Δx  and  Δy.  
For example, in case of function   (under con-
dition ) the structural equa-

tion takes the form , 

Δx and Δy either tending to zero or tending to large 
numbers.

In this study we suggest developing the method 
for solving boundary value problems presented in [1] 
and [2].

We have differential equation

,                  (1)

having precise solution . This solution can be 
the solution of a number of other differential equations. 
Such equations are, for example:

,                                         (2)

,                                             (3)

, 

where .                                     (4)

The solution of each of the equations is an inde-
pendent boundary value problem with the choice of 
the corresponding difference scheme. However, the 
boundary conditions for these tasks are identical. So, 
the same solution should be obtained. This enables 
choosing the most appropriate equation. It may be as-
sumed that equation (4) applied in [1] and [2] is such 
an equation.

The following example illustrates the use of this 
method.

Function

                                                                                          (5)

is a precise solution of the following partial differential equations:

;                                                     (6)

 ;                                                     (7)

 .                                                  (8)

Solving these equations numerically is difficult. The 
first- and third-order equations cannot be solved due to 
the instability of the difference schemes. The solution of 
the second-order differential equation is prevented by the 
cumbersome source function. In this case we foreknow 
that a solution of any of the suggested equations is a solu-
tion of equation (4). Let us use the possibility of substitu-
tion. The procedure of solving this substituting equa-

tion presents no problems. Such features as the absence 
of the source function, the possibility of coincidence 
of the numerical solution with the precise solution and 
the independence of the obtained solution on the stride 
parameter along the space facilitate the solution check. 

Boundary conditions for equation (4) remain the 
same. The calculations were carried out according to 
the finite-difference scheme
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                                            (9) 

for orthogonal region 0 ≤ x ≤ 6, 0 ≤ y ≤ 6  by 
the relaxation method. The stride parameter along the 
space Δx = Δy =1.

The difference between the approximate solution 
and the precise one (the residual) was calculated by the 
formula

,                        (10) 

where the sum was calculated for all the reference points 
of the range. For checking purposes a numerical solution 
was carried out at a step along the space Δx = Δy =0.5.

The calculation results are presented in Table.

 Results of the numerical solution of equations (6), (7), (8) and (4)

Differential equation Precise solution Residual

no numerical solution 
was obtained

no numerical solution 
was obtained.

no numerical solution 
was obtained.

< 1.0·10-14

 Δx = Δy =1.0 
Δt=0.257 
< 3.0·10-12

 Δx = Δy =0.5
Δt=0.06 

The conducted substitution of the initial equation 
by the simpler one can be useful when creating algo-
rithms for the numerical solution of partial equations.
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Litvinovich for the necessary criticism of the studied 
method and for the help in the results discussion, as 
well as to all the staff of the physics department for the 
support during the whole work period.
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