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This paper considers the problem of thermal shock to a massive body in different conditions 
of heating and cooling; the most dangerous mode of heating was identified, the influence of 
inertial effects on the value of emerging thermal stress was investigated.
A new equation of compatibility of stress with the inertial effects, which generalizes the 
known Beltrami-Mitchell relation for quasi-static cases, was obtained by methods of the 
tensor algebra. The theory of heat stroke solids was developed in terms of dynamic problems 
of thermoelasticity in different forms of heat stress: temperature heating; thermal heating; 
heating medium. The equations to calculate the jumps on the front of thermoelastic waves 
were obtained. The most dangerous mode of heat stroke was identified.
The effect of relaxation in thermal problems was described in the context of the investigation 
of thermal stress state of a massive body. It was shown, that an increase in relaxation time, 
i.e. heating rates of the boundary surface of the body, causes a reduction of thermal stress 
maxima. The original results of the thermal reaction of a solid to cooling were obtained; it 
was shown that, in comparison with the heating mode, the cooling mode is more devastating, 
especially for near-surface layers of solids. The role of the relaxation temperature in the cooling 
mode was identified. New functional structures were proposed as analytical solutions to the 
major dynamic problems of thermomechanic on the basis of the use of the Kar functions, 
which are relatively new.
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Introduction

Thermal shock is one of central problems in ther-
momechanics in the context of the creation of powerful 
energy radiators and their use in various technological 
operations. Research along this line based on models 
of dynamic and quasistatic thermoelasticity reached an 
advanced stage of development: physical regularities 
of the thermally stressed state in isotropic and aniso-
tropic elastic bodies based on classical Fourier and 
Maxwell-Cattaneo-Lykov phenomenologies concern-
ing the finite speed of heat propagation in solid bodies 
were studied; a generalized theory of thermomechan-
ical fields interference with fields of various physical 
nature (electric, magnetic) was developed; defining 
relations of the linearized theory taking into account 
thermal memory were formulated; interrelation of 
macroscopic behavior of a continuous medium with its 
internal state parameters and the rate of their change in 
time was established. Systematization of the results ac-
cumulated in this area of thermomechanics is presented 
in reviews [1, 2] and book [3].

Defining relations of dynamic thermoelasticity. 
Let us assume that D is a finite or partially limited con-
vex region of space  existing in a thermally 
stressed state; S is a piecewise smooth surface, which 
confines region D;  is an external normal to S – a vec-
tor continuous in points of S;  is distribution of 
temperature in region D at ; T0 is initial tempera-
ture, at which region D exists in a non-prestressed and 
non-deformable state.

Let us assume that , , ,  
 are, respectively, components of the stress 

tensors, of the deformation tensors and of the displace-
ment vector. These components fit the main equations 
of (uncoupled) thermoelasticity [3]: motion equations 
(taking into account volume forces ,  geomet-
rical relationships and the physical equations (in index 
designations):

;                                  (1)

;                         (2)

;                     (3)
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, ,
where ρ is density; ,  is Lamé’s 
isothermal coefficient; ν  is Poisson’s coefficient, while  

; E is Young’s modulus; G is shearing 
modulus;  is coefficient of thermal linear expansion;   

 is Kronecker symbol;  
is volume deformation connected with the sum of nor-
mal stresses according to the following formula:

.                (4)

Excluding the components of the displacement vec-
tor in (2) we obtain the known deformations compatibility 
equation in the form , where  is 
alternative (antisymmetric) tensor . 
This equation can be written in more detail:

.                          (5)

Let us express deformations in terms of stresses 
from (3):

.                                                                (6)

Let us contract the tensors in (5) by indexes: 
 and substitute the right 

parts of equation (6). Transformations with the use of 

(1), (2) and tensor algebra properties give the follow-
ing basic equation of dynamic thermoelasticity with 
stresses:

                                   (7)

Equation (7) is the generalized Beltrami-Michell 
equation for dynamic tasks. This case was considered 
for the first time by V. Novatsky with the use of elas-
tokinetics equations with stresses. However, the end 
result has a form differing from (7) and less convenient 
for practical applications. In this context equation (7) 
itself is of interest for thermomechanics.

The thermally stressed state of region D can arise 
in various modes of heat impact on S boundary creat-
ing thermal shock. Among these modes there are cas-
es most commonly occurring in practice: temperature 
heating , , ; thermal 
heating , , , (  is the ther-

mal conductivity of the material;  is the size 
of the thermal flow); heating by the medium  

, ,  (h  is  the  rela-

tive coefficient of heat exchange;  is ambient tem-
perature ). Also cases of uniform cooling can 
be equally considered.

In the context of using equation (7) let us con-
sider a case which is important for many practical ap-
plications. Elastic half-space  originally existing 
at temperature  is exposed on the boundary to 
various modes of thermal influence creating thermal 
shock, namely: 1) temperature heating , 

; 2) thermal heating  

; 3) heating by the medium  
, . In these conditions at

one-dimensional motion ; ;
; ; stresses 

 in case of  and  in case of i = j. If 
volume forces are absent and the boundary of the body 
is free from stress, equation (7) leads to the following 
dynamic problem of thermoelasticity:

, , ; (8)

, , ;                              (9)

, ;                             (10)

where

 .                              (11)

– the speed of the expansion wave propagation in the 
elastic medium, close to the speed of sound. According 
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to (3)–(4) other non-zero components of the stress tensor are given by:

,                              (12)

and

.                                (13)

Equation (8) was obtained for the first time by 
Danilovskaya directly from relationships (1)–(3) and, 
irrespectively of her, by T. Mura, who apparently did 
not know about the previous and more general work of 
Danilovskaya.

Let us first consider heating.
Temperature function T(z, t) in (8)–(13) is the task 

solution:

                              (14)

including also one of the three types of the above 
boundary conditions. In order to carry out a numerical 
experiment let us enter dimensionless variables:

 , , ;
     

where . Let us introduce , 
which are new (in thermomechanics):

;

;

;

,

where  is Laplace’s 
function.

Now we find the required solution from (8)–(11) 
in coordinates :

           (15)

where

                             (16)

for temperature heating, 

                            (17)

for thermal heating, and

                                 (18)

for heating by the medium.
Figure 1 presents typical curves for the time de-

pendence of dynamic temperature of stress   in 
section ξ = 1. Calculations were performed according 
to (15)–(18). It follows from (15) that only stress con-
stituent  – a longitudinal elastic wave, the front of 

which moves inward at speed  from the body sur-
face – arises at the beginning in the fixed section. The 
wave comes at timepoint  τ = 1 to section ξ = 1. Stress   

increases step-wise passing into the region of 
the positive (stretching) values at temperature heating 
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Fig. 1. Change in stress   in time in  section: 
1 – temperature heating; 2 – thermal heating; 3 – heating by the medium ( ).

and then quickly decreases to zero reaching quasistat-
ic values . In case of thermal heating and heat-
ing by the medium stress changes smoothly, without 
a jump, continuously, increases while the expansion 
wave passes, and remains compressing at all t > 0. It 
follows from the curves of Figure 1 that mode (16) 
(at abrupt temperature heating) is most dangerous as 
compared to the other modes, (17) and (18). Thus, the 
propagation of thermoelastic stresses on the basis of 
the dynamic model is not purely diffusive. Instead, it is 
due to the propagation of thermoelastic waves.

Relaxation effect and its effect on thermal 
shock. The stepwise change in the half-space surface tem-
perature from  T0 to TC (TC > T0)  taken as a basis of the 
solution is a mathematical idealization that can become al-
most real only at very large Bio numbers ( , α is 

heat-exchange coefficient). From physical standpoint 
this is impossible. However, such restriction does not 
exclude from consideration a large number of thermo-
mechanical problems concerning temperature (abrupt) 
heating. Nevertheless, in order to study this problem 
completely let us study the thermoelasticity problem 
in a case when the surface temperature  

Fig. 2. Change in the temperature of an elastic 
half-space surface upon heating.

increases from T0 linearly and reaches the value of TC 
within a short, but non-zero time range (Fig. 2):

,

where  is Heaviside function. In a system of di-
mensionless coordinates function  is given by

 ,

where  .

Let us find the required functions in the image space (according to Laplace):

                                                     (19)

Going to the originals we find
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                                                                       (20)

                                                                                             (21)

In the case under consideration stresses change 
continuously. However, their derivatives with time and 

with the space coordinate have discontinuities which 
propagate at speed  .

Fig. 3. Change in stress (21) over time in section ξ = 1.
[Квазистатическое решение means Quasi-static solution].

Fig. 3 shows plots of time dependence of stress  
in point ξ = 1 at various values of . It can be seen 
that the stress maximum quickly decreases with increasing
When , this maximum is only about 14% of its value at 

 (instant heating). For example, in case of carbon steel 
( ) the 
formula gives expansion wave speed , and 
the dependence between time t and dimensionless variable 
τ is given by . When , heating time 
is .

For PMMA organic glass ( ;  
; ;

) expansion wave speed is , and t(τ) 

dependence is . When , heating 
time is .

These results show that even at so small heating 
duration the maximum of dynamic stress decreases in 
comparison with its values at the stepwise change in 
the body surface temperature.

Cooling. Now let us consider a rather new effect 
in the theory of thermal shock: cooling of an elastic 
half-space surface.

So, let us assume that temperature function T(z,t)  
satisfies equation

 ,                           (22)

initial condition

                                                                                                                                        (23)

one of the three types of boundary conditions:

  – temperature cooling,                                                                        (24)

 ( ) – thermal cooling,                                                                           (25)
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,  ( ) – cooling by the medium,                                                 (26)

and boundedness condition

                                                                                                                           (27)

where .
Let us introduce dimensionless values:

 ;  ; ;

;           

For function   we obtain the following problem:

                                                                                                            (28)

(1st and 3rd boundary value problems),

                                                                                                              (29)

(2nd boundary value problem).

The solution of problems (28) and (29) is given by

 upon temperature cooling;

 upon thermal cooling;

  upon cooling

by the medium.

The structure of stress   is given by

           (30)

But according to   functions introduced above 
stress components in (30) can be written as:
 – in case of temperature cooling
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                                                                                                                                        (31)

– in case of thermal cooling

                                                                                                                                       (32)

– in case of cooling by the medium

                                                                 (33)

Fig. 4. Stress  dependence on τ in section ξ = 1 in case of temperature cooling (1), 
thermal cooling (2), cooling by the medium (3) at .

Figure 4 shows dependences of stress on 
time τ in section ξ = 1 in various cooling modes cal-
culated according to equations (30)–(31). All the pro-
cess regularities described above are true in this case as 
well with the only difference that a compression wave 
comes to the mentioned section instead of an expan-
sion wave. At the same time these curves demonstrate 
that the cooling mode creating tensile stress is more 
dangerous to the medium material than the heating 
mode, and temperature cooling, as in the case of heat-
ing, is more destructive.

Relaxation effect upon cooling. Let us consider 
a case when the temperature of the surface of an elastic 
half-space   decreases from initial value   linearly and 
reaches final value   within a short, but non-zero time 
range   referred to as relaxation time.

,

Fig. 5. Change in the temperature of the surface 
of an elastic half-space upon cooling.

In a system of dimensionless coordinated function   
is given by

,

where  .

Let us find the required functions in the image 
space (according to Laplace):

                                                                    (34)
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Going to the originals we find

                                                                                                 (35)

                                                                                                  (36)

Fig. 6. Time dependence of stress in section ξ = 1 upon different relaxation times.

Here a result about the effect of the rate of a body 
boundary surface cooling on its thermoelastic reaction 
is obtained. The longer is cooling time, the lower is 
tensile stress maximum.

Conclusions

This work considers various thermally stressed 
states of a massive body arising at various modes of 
thermal impact on its boundary. It is shown that the 
propagation of thermoelastic stress on the basis of dy-
namic model is not purely diffusive. Instead, it is con-
nected with the propagation of thermoelastic waves. 

It is shown that abrupt temperature heating is most 
dangerous in comparison with the other modes. How-
ever, if relaxation time is taken into account in calcula-
tions (even at small duration of heating), it can be seen 
that the maximum of dynamic stress decreases in com-
parison with its values at stepwise temperature change.

It is shown also that the cooling mode creating 
tensile stress is more dangerous to the material than the 
heating mode. Temperature cooling, as in case of heat-
ing, is more destructive. However, while the cooling time 
increases, the maximum of tensile stress decreases.
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